Question #100460
A particle is subjected simultaneously to two simple harmonic
motions in the same direction each of same frequency but of
different amplitudes and a phase difference Find the
amplitude of the resultant displacement and its phase relation to
one of the components.
1
Expert's answer
2019-12-16T11:06:54-0500

Let


x1=A1cos(ωt),x2=A2cos(ωt+ϕ)x_1=A_1 \cos(\omega t), \quad x_2=A_2 \cos(\omega t+\phi)

Hence


x=x1+x2=A1cos(ωt)+A2cos(ωt+ϕ)x=x_1+x_2=A_1 \cos(\omega t)+A_2 \cos(\omega t+\phi)

=A1cos(ωt)+A2cos(ωt)cos(ϕ)A2sin(ωt)sin(ϕ)=A_1 \cos(\omega t)+A_2 \cos(\omega t)\cos(\phi)-A_2 \sin(\omega t)\sin(\phi)

=cos(ωt)(A1+A2cos(ϕ))sin(ωt)(A2sin(ϕ))= \cos(\omega t)(A_1+A_2\cos(\phi))-\sin(\omega t)(A_2 \sin(\phi))

=Acos(ωt+φ)=A\cos(\omega t+\varphi)

where

Acos(φ)=A1+A2cos(ϕ),  Asin(φ)=A2sin(ϕ)A\cos(\varphi)=A_1+A_2\cos(\phi),\; A\sin(\varphi)=A_2\sin(\phi)

Hence


A=(A1+A2cosϕ)2+(A2sinϕ)2A=\sqrt{(A_1+A_2\cos\phi)^2+(A_2\sin \phi )^2}

tanφ=A2sinϕA1+A2cosϕ\tan\varphi=\frac{A_2\sin\phi}{A_1+A_2\cos\phi}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS