2019-12-12T01:26:35-05:00
Find the electric field produced by a uniformly polarized sphere of radius R
1
2019-12-13T10:08:47-0500
The potential outside:
V ( r ) = P 3 ϵ 0 R 3 r 2 cos θ = 1 4 π ϵ 0 4 π P R 3 3 r 2 cos θ V(r)=\frac{P}{3\epsilon_0}\frac{R^3}{r^2}\cos\theta=\frac{1}{4\pi \epsilon_0}\frac{\frac{4\pi PR^3}{3}}{r^2}\cos\theta V ( r ) = 3 ϵ 0 P r 2 R 3 cos θ = 4 π ϵ 0 1 r 2 3 4 π P R 3 cos θ
V ( r ) = 1 4 π ϵ 0 p ⋅ r ^ r 2 V(r)=\frac{1}{4\pi \epsilon_0}\frac{\bold{p\cdot \hat{r}}}{r^2} V ( r ) = 4 π ϵ 0 1 r 2 p ⋅ r ^ where
p = 4 π P R 3 3 p=\frac{4\pi PR^3}{3} p = 3 4 π P R 3 The potential inside:
V ( r ) = p 3 ϵ 0 r cos θ = p 3 ϵ 0 z V(r)=\frac{p}{3\epsilon_0}r\cos\theta=\frac{p}{3\epsilon_0}z V ( r ) = 3 ϵ 0 p r cos θ = 3 ϵ 0 p z The electric field:
E = − ∇ V = − P 3 ϵ 0 z ^ \bold{E}=-\nabla V=-\frac{P}{3\epsilon_0}\hat{\bold{z}} E = − ∇ V = − 3 ϵ 0 P z ^
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments