Amplitude of the Wave
We need to find the Amplitude of the wave.
Solution:
Given,
Acceleration = a = 10 c m / s 2 a =10 \space cm/s² a = 10 c m / s 2
Displacement = x = 6 c m x = 6 \space cm x = 6 c m
Frequency = ω \omega ω
We know the formula,
a = ω 2 × x a = \omega^2 \times x a = ω 2 × x Plug the values in this,
10 = ω 2 × 6 10 = \omega ^2 \times 6 10 = ω 2 × 6
ω 2 = 10 6 \omega^2 = \frac {10}{6} ω 2 = 6 10
ω = 10 6 \omega = \sqrt {\frac {10} {6} } ω = 6 10
Here,
S p e e d = v = 12 c m / s e c D i s p l a c e m e n t = x = 8 c m Speed = v = 12 \space cm/sec \\
Displacement = x = 8 \space cm Sp ee d = v = 12 c m / sec D i s pl a ce m e n t = x = 8 c m
v = ω A 2 − x 2 v = \omega \space \sqrt { A^2 - x^2} v = ω A 2 − x 2
Squaring on both sides,
v 2 = ω 2 ( A 2 − x 2 ) v^2 = \omega ^2 ( A^2 - x^2) v 2 = ω 2 ( A 2 − x 2 )
Here, A is the Amplitude,
Plug the values in the formula,
144 = ( 10 6 ) ( A 2 − 64 ) 144 = (\frac {10}{6}) ( A^2 - 64) 144 = ( 6 10 ) ( A 2 − 64 )
A 2 − 64 = 144 × 6 10 = 86.4 A^2 - 64 = 144 \times \frac {6}{10} = 86.4 A 2 − 64 = 144 × 10 6 = 86.4
A 2 = 86.4 + 64 = 150.4 A^2 = 86.4 + 64 = 150.4 A 2 = 86.4 + 64 = 150.4
So,
A = 150.4 = 12.26 c m A = \sqrt {150.4} = 12.26 \space cm A = 150.4 = 12.26 c m
Answer: Amplitude of the Wave = A = 12.26 cm
Comments