Question #98669
a ray of light passes from air through a rectangular block of glass with parallel faces 6.5cm apart at an angle of incidence 35 degrees. calculate:
a) the angle of refraction
b) the lateral displacement
1
Expert's answer
2019-11-15T10:20:02-0500

Calculation of angle of refraction and the lateral displacement


We need to find the angle of refraction and lateral displacement


Answer:


Angle of incident = i = 35o35^o


Angle of refraction = r


Refractive index of Air = n1=1n_1 = 1


Refractive index of glass with respect to air = n2=1.65n_2 = 1.65


thickness of the glass = t = 6.5cm


a).


Formula of Snell's Law



sinisinr=n2n1\frac {sin i} {sin r} = \frac {n_2} {n_1}



Now plug the values in the formula,


sin 35osinr=1.651\frac {sin \space 35^o} {sin r} = \frac {1.65} {1}




sin 35o1.65=sinr1\frac {sin \space 35^o} {1.65} = \frac {sin r} {1}


sinr=sin 35o1.65=0.57351.65=0.3475{sin r} = \frac {sin \space 35^o} {1.65} = \frac {0.5735} {1.65} = 0.3475

r=arcsin(0.3457)=20.33or = \arcsin (0.3457) = 20.33^o

(b).


Lateral displacement

=t×sin (ir)cosr=\frac {t \times sin \space (i - r)} {cos r}

Plug the values in the formula,



Lateral displacement=t×sin (ir)cosr=6.5×sin(35o20.33o)cos 20.33oLateral \space displacement = \frac {t \times sin \space (i - r)} {cos r} =\frac { 6.5 \times sin (35^o - 20.33^o)} {cos \space 20.33^o}

=

=6.5×0.86130.09=62.2cm= \frac {6.5 \times 0.8613} {0.09} =62.2 cm


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS