Given: "d = 0.2~\\text{m};~P = 192~\\text{W}. \\\\"
Stefan-Boltzmann Law: "P = {\\sigma}AT^4; \\\\"
where "\\sigma \\approx 5.670367*10^{\u22128}~\\frac{\\text{W}}{\\text{m}^2\\text{K}^4}~" is the Stefan–Boltzmann constant.
Area of a sphere surface is expressed via diameter as "A = {\\pi}d^2.\\\\"
Using this knowledge and numerical values, the temperature in absolute (Kelvin) scale is
"T = \\sqrt[4]{\\frac{P}{{\\sigma}A}} = \\sqrt[4]{\\frac{P}{{\\sigma}{\\pi}d^2}} = \\sqrt[4]{\\frac{192~\\text{W}}{5.670367*10^{\u22128}~\\frac{\\text{W}}{\\text{m}^2\\text{K}^4}~*~3.14~*~(0.2~\\text{m})^2}} \\approx 405.21~\\text{K}."
Comments
Leave a comment