Given: d=0.2 m; P=192 W.d = 0.2~\text{m};~P = 192~\text{W}. \\d=0.2 m; P=192 W.
Stefan-Boltzmann Law: P=σAT4;P = {\sigma}AT^4; \\P=σAT4;
where σ≈5.670367∗10−8 Wm2K4 \sigma \approx 5.670367*10^{−8}~\frac{\text{W}}{\text{m}^2\text{K}^4}~σ≈5.670367∗10−8 m2K4W is the Stefan–Boltzmann constant.
Area of a sphere surface is expressed via diameter as A=πd2.A = {\pi}d^2.\\A=πd2.
Using this knowledge and numerical values, the temperature in absolute (Kelvin) scale is
T=PσA4=Pσπd24=192 W5.670367∗10−8 Wm2K4 ∗ 3.14 ∗ (0.2 m)24≈405.21 K.T = \sqrt[4]{\frac{P}{{\sigma}A}} = \sqrt[4]{\frac{P}{{\sigma}{\pi}d^2}} = \sqrt[4]{\frac{192~\text{W}}{5.670367*10^{−8}~\frac{\text{W}}{\text{m}^2\text{K}^4}~*~3.14~*~(0.2~\text{m})^2}} \approx 405.21~\text{K}.T=4σAP=4σπd2P=45.670367∗10−8 m2K4W ∗ 3.14 ∗ (0.2 m)2192 W≈405.21 K.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments