Question #298890

A two-slit interference experiment is set up, and the fringes are displayed on a screen.

Then the whole apparatus is immersed in the nearest swimming pool. How does the fringe pattern change?



1
Expert's answer
2022-02-20T15:49:16-0500

Position of mthm^{th} bright fringe in air medium,


ym=Rmλοdy_m=R\frac{m\lambda_\omicron}{d}..... (1)


Position of mthm^{th} bright fringe in water medium,


ym=RmλWd{y_m}'=R\frac{m\lambda_W}{d}..... (2)


in equation (1) and (2)

R is the distance from slits to screen

m is the order of the fringe

λW\lambda_W is the wavelength of the light in water medium

λο{\lambda_\omicron} is the wavelength of the light in air medium

d is the distance between slits


Divide equation (II) with equation (I),

ymym=RmλWdRmλοd\frac{{y_m}'}{{y_m}}=\frac{R\frac{m\lambda_W}{d}}{R\frac{m\lambda_\omicron}{d}}

=λWλο=\frac{\lambda_W}{\lambda_\omicron}


The wavelength of the light in water medium is given by,

λW=λοn\lambda_W=\frac{\lambda_\omicron}{n}

where refractive index of the water is n,


Substitute λοn\frac{\lambda_\omicron}{n} for λW\lambda_W to find ym{y_m}' ,

ymym=λοnλο\frac{{y_m}'}{{y_m}}=\frac{\frac{\lambda_\omicron}{n}}{\lambda_\omicron}

=1n=\frac{1}{n}

Substitute 1.33 for n to find ym{y_m}' ,

ymym=11.33\frac{{y_m}'}{{y_m}}=\frac{1}{1.33}

=34=\frac{3}{4}

ym=3ym4{y_m}'=\frac{3{y_m}}{4}


Therefore, the new fringe pattern is 34\frac{3}{4} times the old fringe pattern.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS