Question #285648

If a diffraction grating produces a third-order bright spot for red light (of wavelength 700 nm) at 65.0° from the central maximum, at what angle will the second-order bright spot be for violet light (of wavelength 400 nm)?

1
Expert's answer
2022-01-13T09:27:28-0500

θ3=65.0°\theta _3=65.0°

λ1=700nm=700×109m\lambda_1 =700nm =700×10^{-9}m

λ2=400nm=400×109m\lambda _2=400nm=400×10^{-9}m

We know that angular position of a bright band is given by

Sinθm=mλdSin\theta_m=\frac{m\lambda}{d}

For the third-order bright band,in the first wavelength λ1\lambda _1 whereas mm =+3=+-3


Sinθ3=3λ1dSin\theta _3=\frac{3\lambda_1}{d}


d=3λ1Sinθ3d=\frac{3\lambda_1}{Sin\theta_3}


d=3×700×109Sin65.0°d=\frac{3×700×10^{-9}}{Sin65.0°}


d=2.32×106md=2.32×10^{-6}m


Sinθ2=2λ2dSin\theta_2=\frac{2\lambda_2}{d}

Hence

θ2=Sin1[2λ2d]\theta_2=Sin^{-1}[\frac{2\lambda2}{d}]


θ2=Sin1[2×400×1092.32×106]\theta_2=Sin^{-1}[\frac{2×400×10^{-9}}{2.32×10^{-6}}]


θ2=20.2°\theta_2=20.2°


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS