A graded index fiber with a parabolic index profile supports the propagation of
742 guided modes. The fiber has a numerical aperture in air of 0.3 and a core diameter
of 70 μm. Determine the wavelength of the light propagating in the fiber.
Further estimate the maximum diameter of the fiber which gives single-mode
operation at the same wavelength.
N=742
NA = 0.3
d = 70 "\\mu"
Number of modes of propagation in graded index fiber is
"N = 2.45(\\frac{d \\times NA}{\u03bb})^2 \\\\\n\n742 = \\frac{2.45(70 \\times 10^{-6} \\times 0.3)^2}{\u03bb^2} \\\\\n\n\u03bb^2 = \\frac{2.45(21 \\times 10^{-6})^2}{742} \\\\\n\n\u03bb = \\sqrt{1.456 \\times 10^{-12}} \\\\\n\n\u03bb = 1.2067 \\times 10^{-6} \\; \\mu m"
For single mode operation:
"V\u22642.405 \\\\\n\n\\frac{2 \\pi \\times a \\times NA}{\u03bb } \u2264 2.405 \\\\\n\na \u2264 \\frac{2.405 \\times \u03bb }{2 \\pi \\times NA} \\\\\n\na \u2264 \\frac{2.405 \\times 1.2067 \\times 10^{-6}}{2 \\pi \\times 0.3} \\\\\n\na \u2264 1.54 \\times 10^{-6} \\; m"
a-radius ≤ 1.54 "\\mu" m and diameter d = 2a
"d \u2264 2 \\times 1.54 \\; \\mu m \\\\\n\nd \u2264 3.08 \\; \\mu m"
The maximum diameter "d = 3.08 \\; \\mu m"
Comments
Leave a comment