Answer to Question #263545 in Optics for Arpit

Question #263545

In Newton’s ring experiment the diameter of 16





th bright ring changes from 1.8 cm to 1.5cm when a liquid is





introduced the plate and the lens. Find the refractive index of the liquid and the diameter of the 5





th dark ring

1
Expert's answer
2021-11-09T16:36:20-0500

db16=1.8cmd_{b16} =1.8cm

db16=1.5cmd'_{b16} =1.5cm

rbk=(k12)λRnr_{bk}=\sqrt{(k-\frac{1}{2})\frac{\lambda R}{n}}

rb16rb16=db16db16=1.81.5=1.2\frac{r_{b16}}{r'_{b16}}=\frac{d_{b16}}{d'_{b16}}=\frac{1.8}{1.5}= 1.2

rb16=(1612)λRn1r_{b16}=\sqrt{(16-\frac{1}{2})\frac{\lambda R}{n_1}}

rb16=(1612)λRn2 (1)r'_{b16}=\sqrt{(16-\frac{1}{2})\frac{\lambda R}{n_2}}\ (1)

rb16rb16=n2n1\frac{r_{b16}}{r'_{b16}}=\sqrt{\frac{n_2}{n_1}}

n11 suppose the expiration is in the airn_1\approx 1 \text{ suppose the expiration is in the air}

n2=1.22=1.44n_2 =1.2^2=1.44

rdk=kλRnr_{dk}=\sqrt{k\frac{\lambda R}{n}}

From the formula (1)\text{From the formula (1)}

λRn2=rb16115.5 then\sqrt{\frac{\lambda R}{n_2}}=r'_{b16}*\sqrt{\frac{1}{15.5}}\text{ then}

rd5=5db162115.5=0.75515.5=0.43cmr'_{d5}=\sqrt{5}*\frac{d'_{b16}}{2}*\sqrt{\frac{1}{15.5}}=0.75*\sqrt{\frac{5}{15.5}}=0.43cm


Answer:\text{Answer:}

1.44refractive index of a liquid1.44 -\text{refractive index of a liquid}

0.43cmradius 5 of the dark ring when immersed in liquid0.43cm - \text{radius 5 of the dark ring when immersed in liquid}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment