d b 16 = 1.8 c m d_{b16} =1.8cm d b 16 = 1.8 c m
d b 16 ′ = 1.5 c m d'_{b16} =1.5cm d b 16 ′ = 1.5 c m
r b k = ( k − 1 2 ) λ R n r_{bk}=\sqrt{(k-\frac{1}{2})\frac{\lambda R}{n}} r bk = ( k − 2 1 ) n λ R
r b 16 r b 16 ′ = d b 16 d b 16 ′ = 1.8 1.5 = 1.2 \frac{r_{b16}}{r'_{b16}}=\frac{d_{b16}}{d'_{b16}}=\frac{1.8}{1.5}= 1.2 r b 16 ′ r b 16 = d b 16 ′ d b 16 = 1.5 1.8 = 1.2
r b 16 = ( 16 − 1 2 ) λ R n 1 r_{b16}=\sqrt{(16-\frac{1}{2})\frac{\lambda R}{n_1}} r b 16 = ( 16 − 2 1 ) n 1 λ R
r b 16 ′ = ( 16 − 1 2 ) λ R n 2 ( 1 ) r'_{b16}=\sqrt{(16-\frac{1}{2})\frac{\lambda R}{n_2}}\ (1) r b 16 ′ = ( 16 − 2 1 ) n 2 λ R ( 1 )
r b 16 r b 16 ′ = n 2 n 1 \frac{r_{b16}}{r'_{b16}}=\sqrt{\frac{n_2}{n_1}} r b 16 ′ r b 16 = n 1 n 2
n 1 ≈ 1 suppose the expiration is in the air n_1\approx 1 \text{ suppose the expiration is in the air} n 1 ≈ 1 suppose the expiration is in the air
n 2 = 1. 2 2 = 1.44 n_2 =1.2^2=1.44 n 2 = 1. 2 2 = 1.44
r d k = k λ R n r_{dk}=\sqrt{k\frac{\lambda R}{n}} r d k = k n λ R
From the formula (1) \text{From the formula (1)} From the formula (1)
λ R n 2 = r b 16 ′ ∗ 1 15.5 then \sqrt{\frac{\lambda R}{n_2}}=r'_{b16}*\sqrt{\frac{1}{15.5}}\text{ then} n 2 λ R = r b 16 ′ ∗ 15.5 1 then
r d 5 ′ = 5 ∗ d b 16 ′ 2 ∗ 1 15.5 = 0.75 ∗ 5 15.5 = 0.43 c m r'_{d5}=\sqrt{5}*\frac{d'_{b16}}{2}*\sqrt{\frac{1}{15.5}}=0.75*\sqrt{\frac{5}{15.5}}=0.43cm r d 5 ′ = 5 ∗ 2 d b 16 ′ ∗ 15.5 1 = 0.75 ∗ 15.5 5 = 0.43 c m
Answer: \text{Answer:} Answer:
1.44 − refractive index of a liquid 1.44 -\text{refractive index of a liquid} 1.44 − refractive index of a liquid
0.43 c m − radius 5 of the dark ring when immersed in liquid 0.43cm - \text{radius 5 of the dark ring when immersed in liquid} 0.43 c m − radius 5 of the dark ring when immersed in liquid
Comments