We know that the band bending is the difference of the work function of the p-type and n-type material. so,
"qV_{bi}=q\\phi_{p}-q\\phi_{n}"
We know that total band bending is the intrinsic level is the build in potential,
"\\Rightarrow E_{ip}-E_{in}=qV_{bi}"
"\\Rightarrow (E_{ip}-E_F)-(E_{in}-E_F)=qV_{bi}"
In the case of equilibrium,
"E_{ip}-E_F=q\\phi_p"
and "E_F-E_{in}=q\\phi_n"
Hence, we can write it as,
"\\Rightarrow q\\phi_p+q\\phi_n=qV_{bi}"
From the Fermi Dirac statistics,
"p_{Po}=n_i e^{\\frac{E_i-E_F}{RT}}"
"n_{no}=n_i e^{\\frac{E_i-E_F}{RT}}"
In the case of full ionization,
"P_{po}=N_A" and "n_{no}=N_D"
So, we can write,
"qF_{p}+qF_{n}=KT [ \\ln(\\frac{N_A}{n_i})+\\ln(\\frac{N_D}{n_i})]"
Hence, we can write,
"qV_{bi}=KT\\ln{\\frac{N_AN_D}{n_i^2}}"
Now, calculating the depletion region width
"V_{bi}=\\int_{-x_p}^{x_n}E.dx"
"E=\\frac{qN_A}{\\epsilon} x_p"
Hence, "V_{bi}=(\\frac{x_p+x_n}{2})\\frac{qN_A}{\\epsilon}x_p"
But, "N_A x_p = N_D x_n"
Hence, "\\frac{2\\epsilon}{qN_A}=\\frac{N_A+N_D}{N_A}x_p^2"
So, "x_p=\\sqrt{\\frac{2\\epsilon}{q}\\frac{N_D}{N_A}\\frac{1}{N_A+N_D}V_{bi}}"
Comments
Leave a comment