We know that the band bending is the difference of the work function of the p-type and n-type material. so,
q V b i = q ϕ p − q ϕ n qV_{bi}=q\phi_{p}-q\phi_{n} q V bi = q ϕ p − q ϕ n
We know that total band bending is the intrinsic level is the build in potential,
⇒ E i p − E i n = q V b i \Rightarrow E_{ip}-E_{in}=qV_{bi} ⇒ E i p − E in = q V bi
⇒ ( E i p − E F ) − ( E i n − E F ) = q V b i \Rightarrow (E_{ip}-E_F)-(E_{in}-E_F)=qV_{bi} ⇒ ( E i p − E F ) − ( E in − E F ) = q V bi
In the case of equilibrium,
E i p − E F = q ϕ p E_{ip}-E_F=q\phi_p E i p − E F = q ϕ p
and E F − E i n = q ϕ n E_F-E_{in}=q\phi_n E F − E in = q ϕ n
Hence, we can write it as,
⇒ q ϕ p + q ϕ n = q V b i \Rightarrow q\phi_p+q\phi_n=qV_{bi} ⇒ q ϕ p + q ϕ n = q V bi
From the Fermi Dirac statistics,
p P o = n i e E i − E F R T p_{Po}=n_i e^{\frac{E_i-E_F}{RT}} p P o = n i e RT E i − E F
n n o = n i e E i − E F R T n_{no}=n_i e^{\frac{E_i-E_F}{RT}} n n o = n i e RT E i − E F
In the case of full ionization,
P p o = N A P_{po}=N_A P p o = N A and n n o = N D n_{no}=N_D n n o = N D
So, we can write,
q F p + q F n = K T [ ln ( N A n i ) + ln ( N D n i ) ] qF_{p}+qF_{n}=KT [ \ln(\frac{N_A}{n_i})+\ln(\frac{N_D}{n_i})] q F p + q F n = K T [ ln ( n i N A ) + ln ( n i N D )]
Hence, we can write,
q V b i = K T ln N A N D n i 2 qV_{bi}=KT\ln{\frac{N_AN_D}{n_i^2}} q V bi = K T ln n i 2 N A N D
Now, calculating the depletion region width
V b i = ∫ − x p x n E . d x V_{bi}=\int_{-x_p}^{x_n}E.dx V bi = ∫ − x p x n E . d x
E = q N A ϵ x p E=\frac{qN_A}{\epsilon} x_p E = ϵ q N A x p
Hence, V b i = ( x p + x n 2 ) q N A ϵ x p V_{bi}=(\frac{x_p+x_n}{2})\frac{qN_A}{\epsilon}x_p V bi = ( 2 x p + x n ) ϵ q N A x p
But, N A x p = N D x n N_A x_p = N_D x_n N A x p = N D x n
Hence, 2 ϵ q N A = N A + N D N A x p 2 \frac{2\epsilon}{qN_A}=\frac{N_A+N_D}{N_A}x_p^2 q N A 2 ϵ = N A N A + N D x p 2
So, x p = 2 ϵ q N D N A 1 N A + N D V b i x_p=\sqrt{\frac{2\epsilon}{q}\frac{N_D}{N_A}\frac{1}{N_A+N_D}V_{bi}} x p = q 2 ϵ N A N D N A + N D 1 V bi
Comments