We know that
J1=[E1xE1x]
J2=[E2xE2x]
J3=[E3xE3x]
J1=tJ1; 2×2 jhon metrics for transmission
J2=rJ1 2×2 jhon metrics for reflection
t=[tx00ty]
r=[rx00ry]
E2x=txE1x;E2y=tyE1y;
E3x=rxE1x;E3x=ryE1y;
TE mode polerization
rx=n1cosθ1+n2cosθ2n1cosθ1−n2cosθ2
tx=1+rx
TM mode polerization
ry=n2cosθ1+n1cosθ2n2cosθ1−n1cosθ2
ty=n2n1(1+ry)
Now
Y=rel(Aexp(j(w(t−cz))))
Then
A=Axx^+Ayy^
Then
Yx=axcos(w(t−cz)+ϕx)
Now
Yy=aycos(w(t−cz)+ϕy)
Now
ax2ξ2+ay2ξ2−2cosϕaxayξxξy=sin2ϕ
ϕ=0° linear polarization
ϕy>ϕx
Clock wise
ϕy<ϕx
Anti clock wise
Comments