Question #211079

(a) Show that the normal modes of the linear polarizer are linearly polarized waves

(b) Show that the normal modes of the wave retarder are linearly polarized waves

(c) Show that the normal modes of the polarization rotator are right and left circularly polarized waves

What are the eigenvalues of the systems described above?


1
Expert's answer
2021-06-28T17:03:01-0400

We know that

J1=[E1xE1x]J_1=\begin{bmatrix} E_{1x}\\ E_{1x} \end{bmatrix}


J2=[E2xE2x]J_2=\begin{bmatrix} E_{2x}\\ E_{2x} \end{bmatrix}


J3=[E3xE3x]J_3=\begin{bmatrix} E_{3x}\\ E_{3x} \end{bmatrix}


J1=tJ1;J_1=tJ_1; 2×22\times2 jhon metrics for transmission

J2=rJ1J_2=rJ_1 2×22\times2 jhon metrics for reflection

t=[tx00ty]t=\begin{bmatrix} t_x& 0 \\ 0 & t_y \end{bmatrix}

r=[rx00ry]r=\begin{bmatrix} r_x& 0 \\ 0 & r_y \end{bmatrix}

E2x=txE1x;E2y=tyE1y;E_{2x}=t_xE_{1x};E_{2y}=t_yE_{1y};

E3x=rxE1x;E3x=ryE1y;E_{3x}=r_xE_{1x};E_{3x}=r_yE_{1y};

TE mode polerization


rx=n1cosθ1n2cosθ2n1cosθ1+n2cosθ2r_x=\frac{n_1cos\theta_1-n_2cos\theta_2}{n_1cos\theta_1+n_2cos\theta_2}

tx=1+rxt_x=1+r_x

TM mode polerization

ry=n2cosθ1n1cosθ2n2cosθ1+n1cosθ2r_y=\frac{n_2cos\theta_1-n_1cos\theta_2}{n_2cos\theta_1+n_1cos\theta_2}

ty=n1n2(1+ry)t_y=\frac{n_1}{n_2}(1+r_y)

Now

Y=rel(Aexp(j(w(tzc))))Y=rel(Aexp(j(w(t-\frac{z}{c}))))

Then

A=Axx^+Ayy^A=A_x\hat{x}+A_y\hat{y}

Then

Yx=axcos(w(tzc)+ϕx)Y_x=a_xcos(w(t-\frac{z}{c})+\phi_x)

Now

Yy=aycos(w(tzc)+ϕy)Y_y=a_ycos(w(t-\frac{z}{c})+\phi_y)

Now

ξ2ax2+ξ2ay22cosϕξxξyaxay=sin2ϕ\frac{\xi^2}{a_x^2}+\frac{\xi^2}{a_y^2}-2cos\phi\frac{\xi_x\xi_y}{a_xa_y}=sin^2\phi

ϕ=0°\phi=0° linear polarization

ϕy>ϕx\phi_y>\phi_x

Clock wise


ϕy<ϕx\phi_y<\phi_x

Anti clock wise


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS