For a wave that travels only in directions that have small angles with respect to the optical axis, the general from of the complex field may be approximated by
U(x, y, z) ≈ A(x, y, z)e^jkz
where A(x, y, z) is a slowly varying function of z
(a) Show that for such a wave the Helmholtz equation can be reduced to ∇t^2 * A + j2k ∂A/∂z = 0
where ∇t^2 * A = ∂^2/ ∂x62 + ∂^2/ ∂y^2 is the transverse portion of the Laplacian. This equation is known as the paraxial Helmholtz equation.
(b) Show that a solution to this equation is given by A(x, y, z) = A1/q(z) * (e^jk * ((x^2+y^2)/2*q(z)) for any complex q(z) having dq(z)/dz = 1.
(a)
from the given information
substitute "U(x,y,z)\\approx A(x,y,z)e^{jkz}" in to the Helmholtz equation
"(\\Delta ^2 + k^2)U=0"
"[\\frac{\\eth^2}{\\eth x^2}+\\frac{\\eth^2}{\\eth y^2}+\\frac{\\eth^2}{\\eth z^2}+ k^2]e^{jth}=0"
then
"[\\frac{\\eth^2}{\\eth x^2}+\\frac{\\eth^2}{\\eth y^2}]Ae^{jkz} + \\frac{\\eth}{\\eth z}[ \\frac{\\eth}{\\eth z}Ae^{jkz}+jkAe^{jkz}] + k^2Ae^{jkz}=0"
"\\Delta^2_tAe^{jkz} + \\frac{\\eth^2A}{\\eth z^2}e^{jkz} + 2jk \\frac{\\eth A}{\\eth z}e^{jkz}+(jk)^2Ae^{jkz} +k^2Ae^{jkz}=0"
Dividing by "e^{jkz}" on both sides
"\\Delta^2_tAe^{jkz} + \\frac{\\eth^2A}{\\eth z^2}e^{jkz} + 2jk \\frac{\\eth A}{\\eth z}e^{jkz}+(jk)^2Ae^{jkz} +k^2Ae^{jkz}=0 \\over e^{jkz}"
"\\Delta^2_tA +2jk\\frac{\\eth A}{\\eth z} + \\frac{\\eth^2 A}{\\eth z^2} - k^2 + k^2 = 0"
"\\Delta^2_tA +2jk\\frac{\\eth A}{\\eth z} + \\frac{\\eth^2 A}{\\eth z^2}=0"
the slowly varying function approximation for A implies that
"\\frac{\\eth^2}{\\eth z^2}A<< 2jk \\frac{\\eth A}{\\eth z}"
so by neglecting the terms "\\frac{\\eth ^2}{\\eth z^2}A"
"\\Delta^2A+2jk\\frac{\\eth A}{\\eth z}=0....................(1)"
Hence proved
(b)
First we can evaluate a number of different derivatives
"A(x,y,z)= \\frac{A_1}{q}e^{jk(x^2+y^2)\\over2q(z)}"
"\\frac{\\eth}{\\eth z}A(x,y,z)=-\\frac{A_1}{q}\\frac{dq}{dz}e^{jk(x^2+y^2)\\over2q}-\\frac{A_1}{q}{(jk(x^2+y^2)\\over 2q^2}\\frac{dq}{dz}e^{jk(x^2+y^2)\\over2q}"
"\\frac{\\eth}{\\eth z}A(x,y,z)=-(\\frac{1}{q}+{(jk(x^2+y^2)\\over 2q^2})\\frac{dq}{dz}A(x,y,z)"
"\\frac{\\eth}{\\eth x}A(x,y,z)=jk\\frac{xA_1}{q^2}e^{jk(x^2+y^2)\\over2q}"
"\\frac{\\eth^2}{\\eth x^2}A(x,y,z)=jk\\frac{xA_1}{q^2}e^{jk(x^2+y^2)\\over2q} + (jk\\frac{x}{q})^2.\\frac{A_1}{q}e^{jk(x^2+y^2)\\over2q}"
"\\frac{\\eth^2}{\\eth x^2}A(x,y,z)=(jk\\frac{1}{q}-k^2.\\frac{x^2}{q^2})A(x,y,z)"
similarly
"\\frac{\\eth^2}{\\eth y^2}A(x,y,z)=(jk\\frac{1}{q}-k^2\\frac{1}{q}-k^2\\frac{y^2}{q^2})A(x,y,z)"
Now substitute the partial derivative of A into the paraxial Helmholz equation.
Noting that "\\frac{dq}{dz}" is equal to (1) equation
"\\Delta ^2_tA+2jk\\frac{\\eth A}{\\eth z}=(jk \\frac{1}{q}-k^2\\frac{x^2}{q^2}+jk\\frac{1}{q}-k^2\\frac{y^2}{q^2}-2jk\\frac{1}{q}\\frac{dq}{dz}+k^2{(x^2+y^2)\\over q^2}\\frac{dq}{dz})"
"\\Delta ^2_tA+2jk\\frac{\\eth A}{\\eth z}=0"
hence proved
Comments
Leave a comment