(a)
from the given information
substitute U(x,y,z)≈A(x,y,z)ejkz in to the Helmholtz equation
(Δ2+k2)U=0
[ðx2ð2+ðy2ð2+ðz2ð2+k2]ejth=0
then
[ðx2ð2+ðy2ð2]Aejkz+ðzð[ðzðAejkz+jkAejkz]+k2Aejkz=0
Δt2Aejkz+ðz2ð2Aejkz+2jkðzðAejkz+(jk)2Aejkz+k2Aejkz=0
Dividing by ejkz on both sides
ejkzΔt2Aejkz+ðz2ð2Aejkz+2jkðzðAejkz+(jk)2Aejkz+k2Aejkz=0
Δt2A+2jkðzðA+ðz2ð2A−k2+k2=0
Δt2A+2jkðzðA+ðz2ð2A=0
the slowly varying function approximation for A implies that
ðz2ð2A<<2jkðzðA
so by neglecting the terms ðz2ð2A
Δ2A+2jkðzðA=0....................(1)
Hence proved
(b)
First we can evaluate a number of different derivatives
A(x,y,z)=qA1e2q(z)jk(x2+y2)
ðzðA(x,y,z)=−qA1dzdqe2qjk(x2+y2)−qA12q2(jk(x2+y2)dzdqe2qjk(x2+y2)
ðzðA(x,y,z)=−(q1+2q2(jk(x2+y2))dzdqA(x,y,z)
ðxðA(x,y,z)=jkq2xA1e2qjk(x2+y2)
ðx2ð2A(x,y,z)=jkq2xA1e2qjk(x2+y2)+(jkqx)2.qA1e2qjk(x2+y2)
ðx2ð2A(x,y,z)=(jkq1−k2.q2x2)A(x,y,z)
similarly
ðy2ð2A(x,y,z)=(jkq1−k2q1−k2q2y2)A(x,y,z)
Now substitute the partial derivative of A into the paraxial Helmholz equation.
Noting that dzdq is equal to (1) equation
Δt2A+2jkðzðA=(jkq1−k2q2x2+jkq1−k2q2y2−2jkq1dzdq+k2q2(x2+y2)dzdq)
Δt2A+2jkðzðA=0
hence proved
Comments