a)
E ⃗ = E x x ⃗ + E y y ⃗ , \vec{E}=E_x\vec{x}+E_y\vec{y}, E = E x x + E y y ,
E x = − E y , E_x=-E_y, E x = − E y , here phase difference between x- and y-components is π , \pi, π ,
E = ( E x E y ) = E 0 ( 1 − 1 ) , E=\begin{pmatrix}
E_x\\
E_y
\end{pmatrix}=E_0\begin{pmatrix}
1 \\
-1
\end{pmatrix}, E = ( E x E y ) = E 0 ( 1 − 1 ) ,
E ∗ ⋅ E = 1 E^*\cdot E=1 E ∗ ⋅ E = 1
E 0 2 ( 1 2 + ( − 1 ) 2 ) = 1 , E_0^2(1^2+(-1)^2)=1, E 0 2 ( 1 2 + ( − 1 ) 2 ) = 1 ,
E 0 = 1 2 , E_0=\frac{1}{\sqrt 2}, E 0 = 2 1 ,
normalized Jones vector will be
1 2 ( 1 − 1 ) , \frac{1}{\sqrt2}\begin{pmatrix}
1 \\
-1
\end{pmatrix}, 2 1 ( 1 − 1 ) , hence it represents linearly –45° polarized light.
b)
E ⃗ = E x x ⃗ + E y y ⃗ , \vec{E}=E_x\vec{x}+E_y\vec{y}, E = E x x + E y y ,
E x = E y , E_x=E_y, E x = E y , here phase difference between x- and y-components is 0 , 0, 0 ,
E = ( E x E y ) = E 0 ( 1 1 ) , E=\begin{pmatrix}
E_x\\
E_y
\end{pmatrix}=E_0\begin{pmatrix}
1 \\
1
\end{pmatrix}, E = ( E x E y ) = E 0 ( 1 1 ) ,
E ∗ ⋅ E = 1 E^*\cdot E=1 E ∗ ⋅ E = 1
E 0 2 ( 1 2 + 1 2 ) = 1 , E_0^2(1^2+1^2)=1, E 0 2 ( 1 2 + 1 2 ) = 1 ,
E 0 = 1 2 , E_0=\frac{1}{\sqrt 2}, E 0 = 2 1 ,
normalized Jones vector will be
1 2 ( 1 1 ) , \frac{1}{\sqrt2}\begin{pmatrix}
1 \\
1
\end{pmatrix}, 2 1 ( 1 1 ) , hence it represents linearly 45° polarized light.
Comments