Answer to Question #185710 in Optics for melvin

Question #185710
 Write the normalized Jones vectors for each of the following waves, and describe completely the state of polarization of each. (a) 𝐸 ⃗ = 𝐸𝑜 cos(𝑘𝑧 − 𝜔𝑡)𝑥 ̂ − 𝐸𝑜 cos(𝑘𝑧 − 𝜔𝑡)𝑦 ̂    
(b) 𝐸 ⃗ = 𝐸𝑜 sin2π(𝑧/lamda − 𝑣𝑡)𝑥 ̂ + 𝐸𝑜 sin2π( 𝑧/lamda − 𝑣𝑡)𝑦 ̂ 
1
Expert's answer
2021-04-26T17:13:25-0400

a)

E=Exx+Eyy,\vec{E}=E_x\vec{x}+E_y\vec{y},

Ex=Ey,E_x=-E_y, here phase difference between x- and y-components is π,\pi,

E=(ExEy)=E0(11),E=\begin{pmatrix} E_x\\ E_y \end{pmatrix}=E_0\begin{pmatrix} 1 \\ -1 \end{pmatrix},

EE=1E^*\cdot E=1

E02(12+(1)2)=1,E_0^2(1^2+(-1)^2)=1,

E0=12,E_0=\frac{1}{\sqrt 2},

normalized Jones vector will be

12(11),\frac{1}{\sqrt2}\begin{pmatrix} 1 \\ -1 \end{pmatrix}, hence it represents linearly –45° polarized light.


b)

E=Exx+Eyy,\vec{E}=E_x\vec{x}+E_y\vec{y},

Ex=Ey,E_x=E_y, here phase difference between x- and y-components is 0,0,

E=(ExEy)=E0(11),E=\begin{pmatrix} E_x\\ E_y \end{pmatrix}=E_0\begin{pmatrix} 1 \\ 1 \end{pmatrix},

EE=1E^*\cdot E=1

E02(12+12)=1,E_0^2(1^2+1^2)=1,

E0=12,E_0=\frac{1}{\sqrt 2},

normalized Jones vector will be

12(11),\frac{1}{\sqrt2}\begin{pmatrix} 1 \\ 1 \end{pmatrix}, hence it represents linearly 45° polarized light.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment