Ex=Eocos(ωt−kx+ϕo)dx2d2Ex=0 dy2d2Ex=0 dz2d2Ex=−k2Eocos(ωt−kz+ϕo)......(i)
dt2d2Ex=−ω2Eocos(ωt−ky+ϕo)......(ii)
Substituting (i) and (ii) in wave equation we get,
−k2Eocos(ωt−kz+ϕo)+ϵoϵrμo+ω2Eocos(ωt−ky+ϕo)=0⇒k2ω2=ϵoϵrμo1⇒kω=(ϵoϵrμo)−21⇒v=(ϵoϵrμo)−1
Comments
Leave a comment