E x = E o c o s ( ω t − k x + ϕ o ) d 2 E x d x 2 = 0 d 2 E x d y 2 = 0 d 2 E x d z 2 = − k 2 E o c o s ( ω t − k z + ϕ o ) . . . . . . ( i ) E_x=E_ocos(\omega t-kx+\phi_o)\\\dfrac{d^2E_x }{dx^2}=0\ \ \ \ \dfrac{d^2E_x }{dy^2}=0\ \ \ \dfrac{d^2E_x }{dz^2}=-k^2E_ocos(\omega t-kz+\phi_o)......(i) E x = E o cos ( ω t − k x + ϕ o ) d x 2 d 2 E x = 0 d y 2 d 2 E x = 0 d z 2 d 2 E x = − k 2 E o cos ( ω t − k z + ϕ o ) ...... ( i )
d 2 E x d t 2 = − ω 2 E o c o s ( ω t − k y + ϕ o ) . . . . . . ( i i ) \dfrac{d^2E_x }{dt^2}=-\omega^2E_ocos(\omega t-ky+\phi_o)......(ii) d t 2 d 2 E x = − ω 2 E o cos ( ω t − k y + ϕ o ) ...... ( ii )
Substituting (i) and (ii) in wave equation we get,
− k 2 E o c o s ( ω t − k z + ϕ o ) + ϵ o ϵ r μ o + ω 2 E o c o s ( ω t − k y + ϕ o ) = 0 ⇒ ω 2 k 2 = 1 ϵ o ϵ r μ o ⇒ ω k = ( ϵ o ϵ r μ o ) − 1 2 ⇒ v = ( ϵ o ϵ r μ o ) − 1 -k^2E_ocos(\omega t-kz+\phi_o) + \epsilon_o\epsilon_r\mu_o+\omega^2E_ocos(\omega t-ky+\phi_o)=0\\ \Rightarrow\dfrac{\omega^2}{k^2}=\dfrac{1}{ \epsilon_o\epsilon_r\mu_o}\\ \Rightarrow \dfrac{\omega}{k}=( \epsilon_o\epsilon_r\mu_o)^{-\frac{1}{2}}\\ \Rightarrow v=(\sqrt{ \epsilon_o\epsilon_r\mu_o})^{-1} − k 2 E o cos ( ω t − k z + ϕ o ) + ϵ o ϵ r μ o + ω 2 E o cos ( ω t − k y + ϕ o ) = 0 ⇒ k 2 ω 2 = ϵ o ϵ r μ o 1 ⇒ k ω = ( ϵ o ϵ r μ o ) − 2 1 ⇒ v = ( ϵ o ϵ r μ o ) − 1
Comments