Determine the stopping distances for an automobile going a constant initial speed of 93km/h and human reaction time of 0.30 s, for an acceleration a=−3.3m/s2.
From equation of motion
vf2−vi2=2aΔx Δx=vf2−vi22av_f^2-v_i^2=2a\Delta x\\\ \\\Delta x=\dfrac{v_f^2-v_i^2}{2a}vf2−vi2=2aΔx Δx=2avf2−vi2
Stopping distance d=vt+Δxd=vt+\Delta xd=vt+Δx
Here, vi=93 km/h=93(5/18) m/s=26 m/sv_i=93\ km/h=93(5/18)\ m/s= 26\ m/svi=93 km/h=93(5/18) m/s=26 m/s
Δx=vf2−vi22a=02−262−2×3.3=102.42 m\Delta x=\dfrac{v_f^2-v_i^2}{2a}=\dfrac{0^2-26^2}{-2\times 3.3}=102.42\ mΔx=2avf2−vi2=−2×3.302−262=102.42 m
and Stopping Distance d=vt+Δx=23(0.30)+102.42=109.32 md=vt+Δx =23(0.30)+102.42=109.32\ md=vt+Δx=23(0.30)+102.42=109.32 m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments