Question #164230

  Compare the shift in frequency if a 2000Hz source is moving towards you at 15ms-1 versus if you are moving towards it at 15ms-1. Are the two frequencies exactly the same? Are they close? Repeat

the calculation for 150ms-1 and then again for 300ms-1. What can you conclude about the asymmetry of the Doppler formulas? Show that at low speeds (relative to the speed of sound), the two formulas-source approaching and detector approaching-yield the same result.



1
Expert's answer
2021-03-09T15:31:08-0500

vsnd=343  m/sv_{snd} = 343 \;m/s

At 15 m/s

fsource=f11vstcvsnd=2000×1115343=2092  Hzfobserver=f(1+vstcvsnd)=2000(1+15343)=2087  Hzf’_{source} = f\frac{1}{1 -\frac{v_{stc}}{v_{snd}}} \\ = 2000 \times \frac{1}{1 -\frac{15}{343}} \\ = 2092 \;Hz \\ f’_{observer} = f(1 + \frac{v_{stc}}{v_{snd}}) \\ =2000(1 +\frac{15}{343}) \\ = 2087 \;Hz

At 150 m/s

fsource=f11vstcvsnd=2000×11150343=3554  Hzfobserver=f(1+vstcvsnd)=2000(1+150343)=2874  Hzf’_{source} = f\frac{1}{1 -\frac{v_{stc}}{v_{snd}}} \\ = 2000 \times \frac{1}{1 -\frac{150}{343}} \\ = 3554 \;Hz \\ f’_{observer} = f(1 + \frac{v_{stc}}{v_{snd}}) \\ =2000 (1 +\frac{150}{343}) \\ = 2874 \;Hz

At 300 m/s

fsource=f11vstcvsnd=2000×11300343=15,961  Hzfobserver=f11+vstcvsnd=2000(1+300343)=3749  Hzf’_{source} = f\frac{1}{1 -\frac{v_{stc}}{v_{snd}}} \\ = 2000 \times \frac{1}{1 -\frac{300}{343}} \\ = 15,961 \;Hz \\ f’_{observer} = f\frac{1}{1 + \frac{v_{stc}}{v_{snd}}} \\ =2000 (1 +\frac{300}{343}) \\ = 3749 \;Hz

At low speeds (relative to the speed of sound), the two formulas-source approaching and detector approaching-yield the same result.

fsource=f11vstcvsndfsource=f(1vstcvsnd)1fsourcef(1+vstcvsnd)fsource=fobserverf’_{source} = f\frac{1}{1 -\frac{v_{stc}}{v_{snd}}} \\ f’_{source} = f(1 -\frac{v_{stc}}{v_{snd}})^{-1} \\ f’_{source} ≈ f(1 +\frac{v_{stc}}{v_{snd}}) \\ f’_{source} = f’_{observer}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS