Answer to Question #162540 in Optics for Samanta samira

Question #162540

Helium-neon laser light of wavelength 632.8 nm is sent through a 0.300mm wide single slit. What is the width of central maximum on a screen 1.00 m from the slit?


1
Expert's answer
2021-02-25T17:43:28-0500

Let's write the condition for the minimum (or destructive interference):


wsinθ1=mλ,wsin\theta_1=m\lambda,

here, ww is the width of the slit, θ1\theta_1 is the half-angular width of the central maximum, λ\lambda is the wavelength.

For m=1m=1 (the first minimum) our formula becomes:


wsinθ1=λ,wsin\theta_1=\lambda,sinθ1=λw=632.8109 m0.3103 m=2.11103.sin\theta_1=\dfrac{\lambda}{w}=\dfrac{632.8\cdot10^{-9}\ m}{0.3\cdot10^{-3}\ m}=2.11\cdot10^{-3}.

Then, we can find the position of the minimum on the screen from the geometry:


tanθ1sinθ1θ1yL,tan\theta_1\approx sin\theta_1\approx \theta_1\approx \dfrac{y}{L},y=Lsinθ1=1 m2.11103=2.11103 m.y=Lsin\theta_1=1\ m\cdot2.11\cdot10^{-3}=2.11\cdot10^{-3}\ m.

Finally, we can find the width of the central maximum:


wcentral=2y=22.11103 m=4.22103 m=4.22 mm.w_{central}=2y=2\cdot2.11\cdot10^{-3}\ m=4.22\cdot10^{-3}\ m=4.22\ mm.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment