Question #154849

Consider a cavity consisting of two plane mirrors separated by a distance 60 cm in air. 

Calculate the mode number corresponding to the wavelength λ=600 nm. Also 

calculate the frequency spacing between the two longitudinal modes.


1
Expert's answer
2021-01-13T11:42:01-0500

ΔVm=C2L=(3×108ms1)0.6×2=2.5×108Hz\Delta V_m=\frac{C}{2L}=\frac{\left(3\times10^8ms^{-1}\right)}{0.6\times2}=2.5\times10^8Hz

modenumber=ΔVΔVm=5×1014Hz2.5×108Hz=2×106modsmode\:number=\frac{\Delta V}{\Delta V_m}=\frac{5\times10^{14}Hz}{2.5\times10^8Hz}=2\times10^6mods

Frequencyofspacing(ΔV)=VelocityofairWavelength=3×108ms1600×109m=5×1014HzFrequency\:of\:spacing\left(\Delta V\right)=\frac{Velocity\:of\:air}{Wavelength}=\frac{3\times10^8ms^{-1}}{600\times10^{-9m}}=5\times10^{14}Hz


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS