Consider a cavity consisting of two plane mirrors separated by a distance 60 cm in air.
Calculate the mode number corresponding to the wavelength λ=600 nm. Also
calculate the frequency spacing between the two longitudinal modes.
ΔVm=C2L=(3×108ms−1)0.6×2=2.5×108Hz\Delta V_m=\frac{C}{2L}=\frac{\left(3\times10^8ms^{-1}\right)}{0.6\times2}=2.5\times10^8HzΔVm=2LC=0.6×2(3×108ms−1)=2.5×108Hz
mode number=ΔVΔVm=5×1014Hz2.5×108Hz=2×106modsmode\:number=\frac{\Delta V}{\Delta V_m}=\frac{5\times10^{14}Hz}{2.5\times10^8Hz}=2\times10^6modsmodenumber=ΔVmΔV=2.5×108Hz5×1014Hz=2×106mods
Frequency of spacing(ΔV)=Velocity of airWavelength=3×108ms−1600×10−9m=5×1014HzFrequency\:of\:spacing\left(\Delta V\right)=\frac{Velocity\:of\:air}{Wavelength}=\frac{3\times10^8ms^{-1}}{600\times10^{-9m}}=5\times10^{14}HzFrequencyofspacing(ΔV)=WavelengthVelocityofair=600×10−9m3×108ms−1=5×1014Hz
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments