Question #147978
calculate the coherence time and coherence length of white light of wave length range of 3500 angstrom to 6500 angstrom
1
Expert's answer
2020-11-30T15:22:35-0500

As per the given question,

The range of the wavelengths of the lights are

λ1=3500A=3500×1010m\lambda_1=3500 A^\circ = 3500\times 10^{-10}m

λ2=6500A=6500×1010m\lambda_2=6500 A^\circ = 6500\times 10^{-10}m

We know that,

T=λcT=\frac{\lambda}{c}

Hence,

T1=3500×10103×108sec=1166.67×1018s\Rightarrow T_1=\frac{3500\times 10^{-10}}{3\times 10^8}sec =1166.67\times 10^{-18}s

T1=1.167×1015s\Rightarrow T_1 = 1.167\times 10^{-15}s

T2=6500×10103×108sec=2.167×1015sT_2=\frac{6500\times 10^{-10}}{3\times 10^8}sec =2.167\times10^{-15}s

Hence coherence time (ΔT)=(2.167×10151.167×1015)(\Delta T) = (2.167\times 10^{-15}-1.167\times 10^{-15})

=1×1015sec=1\times 10^{-15}sec

coherence length (l)=c×ΔT(l)=c\times \Delta T

l=3×108×1015m\Rightarrow l=3\times 10^{8}\times10^{-15}m

l=3×107m\Rightarrow l = 3\times 10^{-7}m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS