Question #146734
A laser beam is incident on two slits with separation d = 0.026 mm. A screen is placed L = 3.2 m from the slits. The wavelength of the laser light is λ = 4750 Å. θ1 and θ2 are the angles to the first and second bright fringes above the center of the screen.

image: https://usu34ny.theexpertta.com/images/nwjupqdc.mqt.png

(a) Express sin(θ1) in terms of d and λ.
(b) Express sin(θ2) in terms of d and λ.
(c) Express the distance between the two bright fringes on the screen, y, in terms of θ1, θ2 and L.
(d) Solve for the numerical value of y in meters.
1
Expert's answer
2020-11-30T14:58:14-0500

As per the given question,

Separation between the slits (d)=0.026mm=2.6×105m(d)=0.026mm=2.6\times 10^{-5}m

Screen distance (L)=3.2m(L)=3.2m

Wavelength of the light (λ)=4750A=0.0475×105m(\lambda)=4750A^\circ = 0.0475\times 10^{-5}m




For the central maxima y=nλL2dy=\frac{n\lambda L}{2d}

for the first maxima, n=1

y1=λL2dy_1=\frac{\lambda L}{2d}

for the second n = 2

y2=2λL2d=λLdy_2=\frac{2\lambda L}{2d}=\frac{\lambda L}{d}

Hence sinθ1=y1L2+y12\sin \theta_1=\frac{y_1}{\sqrt{L^2+y_1^2}}


sinθ1=λL2dL2+(λL2d)2\Rightarrow \sin \theta_1=\frac{\frac{\lambda L}{2d}}{\sqrt{L^2+(\frac{\lambda L}{2d})^2}}


sinθ1=λ4d2+λ2\Rightarrow \sin \theta_1=\frac{\lambda }{\sqrt{4d^2+\lambda ^2}}


b)b) sinθ2=y2L2+y22\sin \theta_2=\frac{y_2}{\sqrt{L^2+y_2^2}}


sinθ2=λLdL2+(λLd)2\Rightarrow \sin \theta_2=\frac{\frac{\lambda L}{d}}{\sqrt{L^2+(\frac{\lambda L}{d})^2}}


sinθ2=λd2+λ2\Rightarrow \sin \theta_2=\frac{\lambda }{\sqrt{d^2+\lambda ^2}}


c)c) The distance between the two bright fringes on the screen,

y=y2y1y=y_2-y_1

=Ltanθ2Ltanθ1=L\tan\theta_2 -L\tan\theta_1

=L(tanθ2tanθ1)=L(\tan\theta_2-\tan\theta_1)


d)d) y=y2y1y=y_2-y_1


=λLdλL2d=\frac{\lambda L}{d}-\frac{\lambda L}{2d}


=λL2d=\frac{\lambda L}{2d}


=0.0475×105m×3.2m2×2.6×105m=\frac{0.0475\times 10^{-5}m\times 3.2m}{2\times 2.6\times 10^{-5}m}


=0.029m=0.029m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS