As per the given question,
Separation between the slits "(d)=0.026mm=2.6\\times 10^{-5}m"
Screen distance "(L)=3.2m"
Wavelength of the light "(\\lambda)=4750A^\\circ = 0.0475\\times 10^{-5}m"
For the central maxima "y=\\frac{n\\lambda L}{2d}"
for the first maxima, n=1
"y_1=\\frac{\\lambda L}{2d}"
for the second n = 2
"y_2=\\frac{2\\lambda L}{2d}=\\frac{\\lambda L}{d}"
Hence "\\sin \\theta_1=\\frac{y_1}{\\sqrt{L^2+y_1^2}}"
"\\Rightarrow \\sin \\theta_1=\\frac{\\frac{\\lambda L}{2d}}{\\sqrt{L^2+(\\frac{\\lambda L}{2d})^2}}"
"\\Rightarrow \\sin \\theta_1=\\frac{\\lambda }{\\sqrt{4d^2+\\lambda ^2}}"
"b)" "\\sin \\theta_2=\\frac{y_2}{\\sqrt{L^2+y_2^2}}"
"\\Rightarrow \\sin \\theta_2=\\frac{\\frac{\\lambda L}{d}}{\\sqrt{L^2+(\\frac{\\lambda L}{d})^2}}"
"\\Rightarrow \\sin \\theta_2=\\frac{\\lambda }{\\sqrt{d^2+\\lambda ^2}}"
"c)" The distance between the two bright fringes on the screen,
"y=y_2-y_1"
"=L\\tan\\theta_2 -L\\tan\\theta_1"
"=L(\\tan\\theta_2-\\tan\\theta_1)"
"d)" "y=y_2-y_1"
"=\\frac{\\lambda L}{d}-\\frac{\\lambda L}{2d}"
"=\\frac{\\lambda L}{2d}"
"=\\frac{0.0475\\times 10^{-5}m\\times 3.2m}{2\\times 2.6\\times 10^{-5}m}"
"=0.029m"
Comments
Leave a comment