Consider a set if two slits each of width b = 5×10^−2 cm and separated by a distance d = 0.1 cm, illuminated by a monochromatic light of wavelength 6.328 × 10^−5 cm. If a convex lens of focal length 10 cm is placed beyond the double slit arrangement, calculate the positions of the minima inside the first diffraction minimum.
We know that the first minima
"d\\sin \\theta = (m+\\frac{1}{2})\\lambda"
We can write it as
"\\sin \\theta = \\frac{\\lambda}{d}(1+\\frac{1}{2})"
Now, substituting the values
"\\sin\\theta = \\frac{6.328 \u00d7 10^\u22125}{0.1\\times 2}=3.164\\times 10^{-4}"
here angle is very small hence we can write it as "\\sin\\theta\\sim\\theta\\sim\\tan\\theta"
Hence, "\\tan\\theta = 3.164\\times 10^{-4}"
position of the minima "x=f\\tan\\theta"
"x=10\\times 3.164\\times 10^{-4} =0.03164mm"
Now,
"\\sin \\theta = \\frac{\\lambda}{d}(1+\\frac{1}{2})"
"\\sin\\theta = \\frac{6.328 \u00d7 10^\u22125}{0.1}(1+\\frac{1}{2})=\\frac{6.328 \u00d7 10^\u22125}{0.1}(\\frac{3}{2})"
"\\sin \\theta = 9.492\\times 10^{-4}"
"\\tan\\theta\\sim\\sin\\theta=9.492\\times 10^{-4}"
Hence the position of minima
"x=f\\tan\\theta"
"x=10\\times 9.492\\times 10^{-4} =0.094mm"
Comments
Leave a comment