In our case for destructive interference
2tn2−sin2i−λ2=(2k+1)λ2→2t\sqrt{n^2-\sin^2i}-\frac{\lambda}{2}=(2k+1)\frac{\lambda}{2} \to2tn2−sin2i−2λ=(2k+1)2λ→
2tn2−sin2i=kλ+λ2+λ2=(k+1)λ,k=0,1,2,....2t\sqrt{n^2-\sin^2i}=k\lambda+\frac{\lambda}{2}+\frac{\lambda}{2}=(k+1)\lambda,k=0,1,2,....2tn2−sin2i=kλ+2λ+2λ=(k+1)λ,k=0,1,2,....
Assume that k=0k=0k=0
2tn2−sin2i=λ→t=λ2n2−sin2i=2t\sqrt{n^2-\sin^2i}=\lambda\to t=\frac{\lambda}{2\sqrt{n^2-\sin^2i}}=2tn2−sin2i=λ→t=2n2−sin2iλ=
=550⋅10−921.252−sin230°=2.4⋅10−7m=\frac{550\cdot10^{-9}}{2\sqrt{1.25^2-\sin^230°}}=2.4\cdot10^{-7}m=21.252−sin230°550⋅10−9=2.4⋅10−7m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments