Imax=I1+I2+2I1I2⋅cos0°=(I1+I2)2I_{max}=I_1+I_2+2\sqrt{I_1}\sqrt{I_2}\cdot\cos0°=(\sqrt{I_1}+\sqrt{I_2})^2Imax=I1+I2+2I1I2⋅cos0°=(I1+I2)2
Imin=I1+I2+2I1I2⋅cos180°=(I1−I2)2I_{min}=I_1+I_2+2\sqrt{I_1}\sqrt{I_2}\cdot\cos180°=(\sqrt{I_1}-\sqrt{I_2})^2Imin=I1+I2+2I1I2⋅cos180°=(I1−I2)2
ImaxImin=(I1+I2)2(I1−I2)2=(16I+I)2(16I−I)2=259\frac{I_{max}}{I_{min}}=\frac{(\sqrt{I_1}+\sqrt{I_2})^2}{(\sqrt{I_1}-\sqrt{I_2})^2}=\frac{(\sqrt{16I}+\sqrt{I})^2}{(\sqrt{16I}-\sqrt{I})^2}=\frac{25}{9}IminImax=(I1−I2)2(I1+I2)2=(16I−I)2(16I+I)2=925
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments