Solution:
According to the law of conservation of momentum:
M1υ1+M2υ2=M1u1+M2u2M_1\upsilon_1+M_2\upsilon_2=M_1u_1+M_2u_2M1υ1+M2υ2=M1u1+M2u2
M2υ2=M1u1+M2u2−M1υ1M_2\upsilon_2=M_1u_1+M_2u_2-M_1\upsilon_1M2υ2=M1u1+M2u2−M1υ1
Then:
υ2=M1u1+M2u2−M1υ1M2=M1M2(u1−υ1)+u2\upsilon_2=\frac{M_1u_1+M_2u_2-M_1\upsilon_1}{M_2}=\frac{M_1}{M_2}(u_1-\upsilon_1)+u_2υ2=M2M1u1+M2u2−M1υ1=M2M1(u1−υ1)+u2
υ2=20750(20−10)+15=15.27\upsilon_2=\frac{20}{750}(20-10)+15=15.27υ2=75020(20−10)+15=15.27 m/s.
Answer:
υ2\upsilon_2υ2 = 15.27 m/s.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments