Solution:
The available energy of 25 kg of water at 95°C:
"(A.E.)_{25} = mc_p\\int_{T_0}^{T} (1-\\frac{T_0}{T})dT ="
"=25\\cdot{4.2}\\int_{273+15}^{273+95} (1-\\frac{288}{T})dT ="
"= 105[(368-288)-288\\cdot{ln\\frac{368}{288}}] = 987.49" kJ.
The available energy of 35 kg of water at 35°C:
"(A.E.)_{35} = mc_p\\int_{T_0}^{T} (1-\\frac{T_0}{T})dT ="
"=35\\cdot{4.2}\\int_{273+15}^{273+35} (1-\\frac{288}{T})dT ="
"= 147[(308-288)-288\\cdot{ln\\frac{308}{288}}] = 97.59" kJ.
Total available energy (before mixing) is:
"(A.E.)_{total} = (A.E.)_{25} + (A.E.)_{35} = 987.49+97.59 = 1085" kJ.
Answer:
Total available energy (before mixing) is 1085 kJ.
Comments
Leave a comment