The volume of a mole of any ideal gas at NTP (normal temperature and pressure) is 22.4 L. Since 4.0 g of a gas occupies 22.4 liters at NTP, so the molecular mass of the gas is M=4.0 g mol-1=4.0·10-3 kg mol-1.
The speed of the sound in the gas is
"v=\\sqrt{\\frac{\\gamma RT}{M}}"
where "\\gamma" is the ratio of the heat capacities at constant pressure, Cp, and at constant volume, Cv,
"\\gamma =\\frac{{{C}_{p}}}{{{C}_{v}}}"R=8.3 J K-1 mol-1 is the universal gas constant, T is the temperature of the gas (T=273 K at NTP). We are also given that v=952 m s-1.
Find "\\gamma" :
"{{v}^{2}}=\\frac{\\gamma RT}{M}\\,\\,\\,\\Rightarrow \\,\\,\\,\\gamma =\\frac{M{{v}^{2}}}{RT}"
Substitute known values
"\\gamma =\\frac{4.0\\cdot {{10}^{-3}}\\text{ kg mo}{{\\text{l}}^{-1}}\\cdot {{\\left( 952\\,\\text{m}\\,{{\\text{s}}^{-1}} \\right)}^{2}}}{8.3\\text{ J }{{\\text{K}}^{-1}}\\text{mo}{{\\text{l}}^{-1}}\\cdot 273\\,\\text{K}}=1.6"
Now find heat capacity at constant pressure
"\\gamma =\\frac{{{C}_{p}}}{{{C}_{v}}}\\,\\,\\,\\Rightarrow \\,\\,\\,{{C}_{p}}=\\gamma {{C}_{v}}"
Since "\\gamma" =1.6 and Cv=5 J K-1mol-1, then
"{{C}_{p}}=1.6\\cdot 5\\text{ J }{{\\text{K}}^{-1}}\\text{mo}{{\\text{l}}^{-1}}=8\\,\\text{J }{{\\text{K}}^{-1}}\\text{mo}{{\\text{l}}^{-1}}"
Comments
Leave a comment