Question #91168
A mixture of air and water vapour at 1.013 bar and 16 degree C has a dew point of 5degree C.calculate the relative and specific humidity's.
1
Expert's answer
2019-07-02T08:55:27-0400

Using table for saturated vapor


We have:

Partial pressure for saturated vapor for 16 degree C

ps=0.01818(bar)p''_s=0.01818 (bar)

Specific volume

1ρ=147.2(m3/kg)\frac{1}{\rho''}=147.2 (m^3/kg)

From this equation

p=ρRTMp''=\frac{\rho''RT}{M}

molar mass of water

M=0.018(kg/mol)M=0.018 (kg/mol)

For relative humidity

ϕ=pps100\phi=\frac{p''}{p''_s}\cdot 100%ϕ=RT1ρMps100\phi=\frac{RT}{\frac{1}{\rho''}Mp''_s}\cdot 100ϕ=8.31289147.20.0181818100=50%\phi=\frac{8.31\cdot 289}{147.2 \cdot 0.018 \cdot 1818}\cdot 100=50 \%E=mc2E=mc^2

Partial pressure of air we can receive from Dalton's law


p=p+pp=p'+p''p=ppp'=p-p''

p=101300906=1.00394(bar)p'=101300-906=1.00394 (bar)

Further, for air density from gas equation

ρ=pMRT\rho'=\frac{p'M}{RT}

ρ=1013940.0298.31289=1.212(kg/m3)\rho'=\frac{101394\cdot 0.029}{8.31\cdot 289}=1.212 (kg/m^3)

Density of moist air


ρ=ρ+ρ\rho=\rho'+\rho''

Specific humidity

SH=ρρ+ρSH=\frac{\rho''}{\rho'+\rho''}

SH=1147.21.212+1147.2=0.0056SH=\frac{\frac{1}{147.2}}{1.212+\frac{1}{147.2}}=0.0056


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS