Question #90490
Two moles of a monatomic ideal gas (ɣ = 1.67) initially at pressure P1, volume V1, temperature T1 undergoes an isobaric process to volume V2 = 2V1. The gas is expanded adiabatically to V3 = 3V1. Determine final temperature of gas T3 if T1 = 298 K, and sketch the diagram for these processes
1
Expert's answer
2019-06-07T11:43:58-0400

Process 1-2 is isobaric. Hence,


V1T1=V2T2T2=T1V2V1=2T1\frac{V_1}{T_1} = \frac{V_2}{T_2} \, \Rightarrow T_2 = T_1 \frac{V_2}{V_1} = 2 T_1

Process 2-3 is adiabatic. Hence,


p2V2γ=p3V3γp3p2=(V2V3)γ=(23)γp_2 V_2^\gamma = p_3 V_3^\gamma \, \Rightarrow \, \frac{p_3}{p_2} = \left( \frac{V_2}{V_3} \right)^\gamma = \left( \frac{2}{3} \right)^\gamma

Finally, according to the Clapeyron-Mendeleev equation


p2V2T2=p3V3T3T3=T2p3p2V3V2=2T1(23)γ32=2T1(23)(γ1)\frac{p_2 V_2}{T_2} = \frac{p_3 V_3}{T_3} \, \Rightarrow \, T_3 = T_2 \frac{p_3}{p_2} \frac{V_3}{V_2} = 2 T_1 \left(\frac{2}{3}\right)^\gamma \frac{3}{2} = 2 T_1 \left(\frac{2}{3}\right)^{(\gamma-1)}

Substituting the numerical values, we obtain:


T3=2298(23)1.671454KT_3 = 2 \cdot 298 \left(\frac{2}{3} \right)^{1.67-1} \approx 454 \, K


Sketch:





Answer: 454 K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS