Two phases are in equilibrium when
"\\mu_1(T,P)=\\mu_2(T,P)"So
"d\\mu_1(T,P)=d\\mu_2(T,P)""\\left(\\frac{\\partial \\mu_1}{\\partial T}\\right)_P dT+\\left(\\frac{\\partial \\mu_1}{\\partial P}\\right)_T dP=\\left(\\frac{\\partial \\mu_2}{\\partial T}\\right)_P dT+\\left(\\frac{\\partial \\mu_2}{\\partial P}\\right)_T dP"
Using Maxwell's relations
"\\left(\\frac{\\partial \\mu}{\\partial T}\\right)_P=-S""\\left(\\frac{\\partial \\mu}{\\partial P}\\right)_T =V"
we obtain
"-S_1dT+V_1dP=-S_2 dT+V_2 dP"Finally
"\\frac{dP}{dT}=\\frac{S_2-S_1}{V_2-V_1}"Since
"T\\Delta S=Q"we also have
"\\frac{dP}{dT}=\\frac{Q}{T(V_2-V_1)}"
Comments
Leave a comment