The dependence of thermal expansion on temperature, substance, and length is determined by the equation
"\\Delta \\text{L = }\\alpha \\text{L}\\Delta \\text{T}"where ΔL is the change in diameter L of rod, ΔT is the change in temperature, and α is the coefficient of linear expansion.
We have
"L=2\\,\\text{mm}=2\\cdot {{10}^{-3}}\\text{m}""\\Delta L=1.995\\,\\text{mm}-2\\,\\text{mm}=-0.005\\,\\text{mm}=-5\\cdot {{10}^{-6}}\\text{m}"
The coefficient of linear expansion for iron at 20oC is (https://en.wikipedia.org/wiki/Thermal_expansion)
"\\alpha =11.8\\cdot {{10}^{-6}}\\,{{\\text{K}}^{-1}}=11.8\\cdot {{10}^{-6}}\\,{}^\\circ {{\\text{C}}^{-1}}"Substituting the known values into the formula, we get
"-5\\cdot {{10}^{-6}}\\text{m = }11.8\\cdot {{10}^{-6}}\\,{}^\\circ {{\\text{C}}^{-1}}\\cdot \\text{2}\\cdot \\text{1}{{\\text{0}}^{-3}}\\text{m}\\cdot \\Delta \\text{T}"Hence the change in temperature is
"\\Delta \\text{T}=-\\frac{5}{11.8\\cdot 2}\\cdot \\text{1}{{\\text{0}}^{3}}\\,{}^\\circ \\text{C}=-212{}^\\circ \\text{C}"So the machinist would have to cool the iron rod to make it fit the hole by 212 °C
Comments
Leave a comment