Question #87585
calculate the change in melting point of ice when it is subjected to a pressure of 100 atm. Density of ice is 0.917g/c.c and latent heat of ice is 336J/g
Answer :72.26k
1
Expert's answer
2019-04-08T09:43:47-0400

Clausius–Clapeyron relation:

dPdT=QTΔV\frac{dP}{dT}=\frac{Q}{T \Delta V}

whereQ=336J/gQ=336\, J/g - latent heat of ice, ΔV=(10.9171)cm3/g\Delta V = \left(\frac{1}{0.917}-1\right) \, cm^3 /g is the specific volume change of unit mass of the phase transition.As we know, melting point of ice at pressure 1atm at temperature

T0=0C=273.15KT_0=0^\circ C = 273.15K


Assume no (or tiny) density of ice and water dependence on temperature and pressure.

Therefore,


dP=QdTTΔVTT0=eΔPΔVQ=e99atm0.0905cm3/g336J/g=0.997337\int dP=\int \frac{QdT}{T \Delta V} \Rightarrow \frac{T}{T_0}=e^{-\frac{\Delta P \Delta V}{Q}} = e^{-\frac{99\,atm \, 0.0905 \, cm^3 /g}{336\,J/g}}=0.997337

Hence

ΔT=TT0=272.423273.15=0.72749K\Delta T=T-T_0 = 272.423 - 273.15=-0.72749 K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS