Question #87002
A uniform metre rule of weight 1.0N is pivoted at the 0.40m mark. A 2.0N weight is hung from the 0.15m mark. Where must a 2.0N weight be placed to balance the rule?
1
Expert's answer
2019-03-26T06:16:35-0400


M1=M2M_1 =M_2

M1=P1×(x0x1)+Pl(x0xl)M_1 =P_1 \times (x_0-x_1) + P_l(x_0 - x_l)

P1=2NP_1 = 2 N

xo=0.4mx_o = 0.4 m

xl=x02=0.4m2=0.2mx_l = \frac{x_0}{2} = \frac{0.4 m}{2} = 0.2 m

Pl=P×x0L=1N×0.4m1m=0.4NP_l = P\times \frac{x_0}{L} = 1 N \times \frac {0.4 m}{1 m} = 0.4 N


M1=2N×(0.4m0.15m)+0.4N×(0.4m0.2m)=0.58N×mM_1 = 2N \times (0.4 m - 0.15 m) + 0.4 N \times (0.4 m - 0.2 m) = 0.58 N \times m


M2=P2×(x2x0)+Pr(xrx0)M_2 = P_2 \times ( x_2 - x_0) + P_r ( x_r - x_0)

P2=2NP_2 = 2N

Pr=P×Lx0L=1N×1m0.4m1m=0.6NP_r = P \times \frac{L-x_0}{L} = 1 N \times \frac{1 m -0.4 m}{1 m} = 0.6 N

xr=x0+Lx02=0.4m+1m0.4m2=0.7mx_r = x_0 + \frac{L-x_0}{2} = 0.4 m + \frac{1 m - 0.4 m}{2} = 0.7 m


M2=2N×(x20.4m)+0.6N×(0.7m0.4m)=2N×(x20.4m)+0.18N×mM_2 = 2 N \times (x_2 -0.4 m) + 0.6 N \times (0.7 m - 0.4 m ) = 2N \times (x_2 - 0.4 m) + 0.18 N\times m

M1=M2M_1 =M_2

0.58N×m=2N×(x20.4m)+0.18n×m0.58 N\times m = 2 N \times (x_2 -0.4 m) + 0.18 n\times m

x2=0.6mx_2 = 0.6 m

Answer: x2=0.6mx_2 = 0.6 m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS