i0=z0=l0=2 m;(z50−i50)=0.181 cm=0.00181 m;αz=0.0000598 K−1;Δt=50 K;(z50−i50)=z0(1+αzΔt)−i0(1+αiΔt);αi=αz−z50−i50l0Δt=0.0000598 K−1−0.00181 m2 m ∗ 50 K≈0.0000417 K−1.i_0 = z_0 = l_0 = 2~\text{m}; \\ (z_{50} - i_{50}) = 0.181~\text{cm} = 0.00181~\text{m}; \\ \alpha_z = 0.0000598~\text{K}^{-1}; \\ {\Delta}t = 50~\text{K}; \\ (z_{50} - i_{50}) = z_0(1+\alpha_z{\Delta}t) - i_0(1+\alpha_i{\Delta}t); \\ \alpha_i = \alpha_z - \frac{z_{50}-i_{50}}{l_0{\Delta}t} = 0.0000598~\text{K}^{-1} - \frac{0.00181~\text{m}}{2~\text{m}~*~50~\text{K}} \approx 0.0000417~\text{K}^{-1}.i0=z0=l0=2 m;(z50−i50)=0.181 cm=0.00181 m;αz=0.0000598 K−1;Δt=50 K;(z50−i50)=z0(1+αzΔt)−i0(1+αiΔt);αi=αz−l0Δtz50−i50=0.0000598 K−1−2 m ∗ 50 K0.00181 m≈0.0000417 K−1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments