a) v1 = v2, Z1 = Z2, Q = 0
Find the work done
W = P/m
W = 500 kW / 1.35 kg/s = 370 kJ/kg
Since ∆KE = 0 and ∆PE = 0
We get
∆h = W
∆h = 370 kJ/kg
b) v1 = 60 m/s, v2 = 360 m/s, Z1 = 0, Z2 = 3 m, Q = 0
W= ∆h + ∆KE + ∆PE
∆KE = (v22 - v12) / 2 = ((360 m/s)2 – (60 m/s)2) / 2 = 63 kJ/kg
∆PE = g × (Z2 - Z1) = 9.81 × 3 = 29.43 J/kg = 29.43 ×10-3 kJ/kg
We find ∆h
∆h = W – (∆KE + ∆PE)
Finally
∆h = 370 kJ/kg – (63 kJ/kg + 29.43 ×10-3 kJ/kg) = 307 kJ/kg
Comments
Are you sure it’s the right answer bcz the answer on my book is 433kj/kg
Dear Umair, please check updated answer.
How, ∆h = 370 kJ/kg – (63 kJ/kg + 29.43 ×10-3 kJ/kg) is equal to 433 kJ/kg??
Satisfied.
Leave a comment