Question #309158

derive an expression for planck's law of blackbody radiation using this law of wien's displacement law and stefan boltzmann law


1
Expert's answer
2022-03-10T18:01:07-0500

Solution;

The probability that a single mode has energy En=nhvE_n=nhv

is given by the usual Boltzmann factor;

P(n)=eEnkTn=0eEnkTP(n)=\frac{e^{\frac{-E_n}{kT}}}{\displaystyle\sum_{n=0}^{\infin}e^{\frac{E_n}{kT}}}

where the denominator ensures that the total probability is unity, the usual normalisation procedure.

In the language of photons, this is the probability

that the state contains n photons of frequency ν.The mean energy of the mode of frequency ν is therefore;

Enˉ=n=0Enp(n)=n=0EneEnkTn=0eEnkT\bar{E_n}=\displaystyle\sum_{n=0}^{\infin}E_np(n)=\frac{\displaystyle\sum_{n=0}^{\infin}E_ne^{\frac{-E_n}{kT}}}{\displaystyle\sum{n=0}^{\infin}e^{\frac{-E_n}{kT}}}

Which is;

Enˉ=n=0nhvenhvkTn=0enhvkT\bar{E_n}=\frac{\displaystyle\sum_{n=0}^{\infin}nhv e^{\frac{-nhv}{kT}}}{\displaystyle\sum_{n=0}^{\infin}e^{\frac{-nhv}{kT}}}

To simplify the calculation we use ;

enhvkT=xe^{\frac{-nhv}{kT}}=x

We have;

Enˉ=hvn=0nxnn=0xn=hvx+2x2+3x3+...1+x+x2+...=hvx1+2x+3x2+...1+x+x2+...\bar{E_n}=\frac{hv \displaystyle \sum_{n=0}^{\infin}nx^n}{\displaystyle\sum _{n=0}^{\infin}x^n}=hv\frac{x+2x^2+3x^3+...}{1+x+x^2+...}=hvx\frac{1+2x+3x^2+...}{1+x+x^2+...}

Now remember the following series expansion;

11x=1+x+x2+x3+...\frac{1}{1-x}=1+x+x^2+x^3+...

1(1x)2=1+2x+3x2+...\frac{1}{(1-x)^2}=1+2x+3x^2+...

Hence, the mean energy of the mode is

E=hvx1x=hvx11=hvehvkT1E=\frac{hvx}{1-x}=\frac {hv}{x^{-1}-1}=\frac{hv}{e^{\frac{hv}{kT}}-1}

To find the classical limit, we allow the energy quanta hν to tend to zero. Expanding ehvkTe^{\frac{hv}{kT}} ​ for small values of hvkT\frac{hv}{kT}

ehvkT1=1+hvkT+12!(hvkT)2+...1e^{\frac{hv}{kT}}-1=1+\frac{hv}{kT}+\frac{1}{2!}(\frac{hv}{kT})^2+...-1

For small values of hvkT\frac{hv}{kT} ;

ehvkT1=hvkTe^{\frac{hv}{kT}}-1=\frac{hv}{kT}

And so;

Eˉ=hvehvkT1=hvϵkT=kT\bar E=\frac{hv}{e^{\frac{hv}{kT}}-1}=\frac{hv}{\frac {\epsilon}{kT}}=kT

We can now complete the determination of Planck’s radiation formula. We know that the number of modes in the frequency interval ν to v+dv is 8πv2c3dv\frac{8πv^2}{c^3}dv per unit volume.


The energy density of radiation in the frequency range is;

u(v)dv=8πv2c3Evˉdvu(v)dv=\frac{8πv^2}{c^3}\bar{E_v}dv

u(v)dv=8πv2c31ehvkT1u(v)dv=\frac{8πv^2}{c^3}\frac{1}{e^{\frac{hv}{kT}}-1}

Which is the Planck's distribution function.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS