Solution;
Given;
k=1.34
V1=6ft3
P1=15psia
r=5
T1=100F=560°R
Qa=500Btu
From the relation;
T1T2=(V2V1)k−1=rk−1
T2=560×50.34=968°R
The mass can be obtained as;
m=RTPV
m=53.34×56015×144×6=0.4339lb
We can find Cv as;
Cv=k−1R=0.3453.34=156.88ft/lb°R
Heat added;
Qa=mCvΔT
Qa=mCv(T3−T2)
From which we obtain T3 as;
T3=mCvQa+T2
T3=0.4339×156.88500×778+968
T3=6682.69°R
P2=P1rk
P2=15×51.34=129.63psia
P3=P2(T2T3)=129.63(9686682.69)
P3=894.93psia
T4=T3(r1)k−1
T4=6682.69(51)0.34
T4=3866.47°R
Qr=mCv(T1−T4)
Qr=0.4339×156.88(560−6682.69)
Qr=535.70Btu
Efficiency;
η=1−rk−11
η=1−50.341=0.4214
Wnet=η×Qa
Wnet=0.4214×500=210Btu
Mean effective pressure;
Pm=V1−V2Wnet
V2=rV1=56=1.2ft3
Pm=(6−1.2)×144210×778
Pm=236.37psia
Comments