Question #276477

Find the temperature, mass and total enthalpy of the liquid and vapor phases of 5 kg of water in a container with a pressure of 150 kPa and a constant volume of 200L.


1
Expert's answer
2021-12-06T16:41:55-0500

m=5  kgp=150  kPa=150×103  PaV=200  L=0.2  m3m=5\; kg \\ p= 150 \; kPa = 150 \times 10^3 \; Pa \\ V = 200 \;L = 0.2 \; m^3

The specific volume:

v=Vm=0.2  m35  kg=0.04  m3/kgv = \frac{V}{m} = \frac{0.2 \;m^3}{5 \;kg}=0.04 \;m^3/kg

The specific volume of saturated liquid:

vf=0.00105273  m3/kgv_f = 0.00105273 \; m^3/kg

The specific volume of saturated vapor:

vg=1.1593  m3/kgv=vf+x(vgvf)v_g = 1.1593 \;m^3/kg \\ v=v_f +x(v_g -v_f)

x = dryness fraction

0.04  m3/kg=0.00105273  m3/kg+x(1.15930.00105273)x=0.03894727  m3/kg1.15824727  m3/kgx=0.03360.04 \; m^3/kg = 0.00105273 \;m^3/kg + x(1.1593 -0.00105273) \\ x = \frac{0.03894727 \; m^3/kg}{1.15824727 \;m^3/kg} \\ x = 0.0336

The mass of water:

x×m=0.0336×5=0.168  kgx \times m = 0.0336 \times 5 = 0.168 \; kg

The mass of vapor:

(1x)×m=4.832  kg(1-x) \times m = 4.832 \;kg

The specific enthalpy of saturated liquid

hf=467.13  kJ/kgh_f = 467.13 \; kJ/kg

The specific enthalpy of saturated vapor:

h_g = 2693.1 \; kJ/kg

Specific enthalpy:

h=hf+x(hghf)h=467.13  kJ/kg+0.0336(2693.1467.13)  kJ/kgh=541.92  kJ/kgh =h_f +x(h_g-h_f) \\ h = 467.13 \;kJ/kg + 0.0336(2693.1 -467.13) \; kJ/kg \\ h = 541.92 \;kJ/kg

The enthalpy:

H=m×hH=5×541.92=2709.6  kJH = m \times h \\ H = 5 \times 541.92 = 2709.6 \; kJ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS