Find the temperature, mass and total enthalpy of the liquid and vapor phases of 5 kg of water in a container with a pressure of 150 kPa and a constant volume of 200L.
"m=5\\; kg \\\\\n\np= 150 \\; kPa = 150 \\times 10^3 \\; Pa \\\\\n\nV = 200 \\;L = 0.2 \\; m^3"
The specific volume:
"v = \\frac{V}{m} = \\frac{0.2 \\;m^3}{5 \\;kg}=0.04 \\;m^3\/kg"
The specific volume of saturated liquid:
"v_f = 0.00105273 \\; m^3\/kg"
The specific volume of saturated vapor:
"v_g = 1.1593 \\;m^3\/kg \\\\\n\nv=v_f +x(v_g -v_f)"
x = dryness fraction
"0.04 \\; m^3\/kg = 0.00105273 \\;m^3\/kg + x(1.1593 -0.00105273) \\\\\n\nx = \\frac{0.03894727 \\; m^3\/kg}{1.15824727 \\;m^3\/kg} \\\\\n\nx = 0.0336"
The mass of water:
"x \\times m = 0.0336 \\times 5 = 0.168 \\; kg"
The mass of vapor:
"(1-x) \\times m = 4.832 \\;kg"
The specific enthalpy of saturated liquid
"h_f = 467.13 \\; kJ\/kg"
The specific enthalpy of saturated vapor:
h_g = 2693.1 \; kJ/kg
Specific enthalpy:
"h =h_f +x(h_g-h_f) \\\\\n\nh = 467.13 \\;kJ\/kg + 0.0336(2693.1 -467.13) \\; kJ\/kg \\\\\n\nh = 541.92 \\;kJ\/kg"
The enthalpy:
"H = m \\times h \\\\\n\nH = 5 \\times 541.92 = 2709.6 \\; kJ"
Comments
Leave a comment