Answer to Question #270323 in Molecular Physics | Thermodynamics for Anu

Question #270323

A gas has a volume of 120m³ at stp. if the gas is compressed adiabatically to a volume of 25m³. calculate the new temperature, pressure and work done on the gas. [Cp= 1.68kj/kg-¹ k-¹, Cv = 1.20 kj kg-¹ k-¹]


1
Expert's answer
2021-11-29T19:17:13-0500

For adiabatic compression

P2=P1(V1V2)rP_{2}=P_{1}(\frac{V_{1}}{V_{2}} )^r

Where:

P1=P_{1}= initial pressure= atmospheric pressure=1.00×105N/M2=1.00×10^5N/M^{2}

P2=P_{2}= final pressure

V1=V_{1}= Initial volume=120M3120M^{3}

V2=V_{2}= final volume=25M325M^3

r=CvCpr=\frac{Cv}{Cp}


r=r= 1.68kj/kg1K11.2kj/kg1K1=1.4\frac{1.68kj/kg^{-1}K^{-1}}{1.2kj/kg^{-1}K^{-1}} =1.4

Therefore:

P2=(1×105N/M2)×(120M325M3)1.4=8.99×105N/M2P_{2}=(1×10^5N/M^2)×(\frac{120M^3}{25M^3})^{1.4}=8.99×10^5N/M^2


From Ideal gas laws Final Temperature:

T2=(P2V2P1V1)T1T_{2}=(\frac{P_{2}V_{2}}{P_{1}V_{1}})T_{1}

Where:

T1=Roomtemperature=293KT_{1}= Room temperature=293K

T2=(8.99×105N/M2×25M31×105N/M2×120M3)×293K=548.76KT_{2}= (\frac{8.99×10^5N/M^2×25M^3}{1×10^5N/M^2×120M^3})×293K=548.76K


Work done in Adiabatic process W:

W=11r(P2V2P1V1)W=\frac{1}{1-r}(P_{2} V_{2}-P_{1} V_{1})


W=111.4(8.99×105N/M2×25M31×105N/M2×120M3)=261.875jW=\frac{1}{1-1.4}(8.99×10^5N/M^2×25M^3-1×10^5N/M^2×120M^3)= -261.875j






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment