A gas has a volume of 120m³ at stp. if the gas is compressed adiabatically to a volume of 25m³. calculate the new temperature, pressure and work done on the gas. [Cp= 1.68kj/kg-¹ k-¹, Cv = 1.20 kj kg-¹ k-¹]
For adiabatic compression
"P_{2}=P_{1}(\\frac{V_{1}}{V_{2}} )^r"
Where:
"P_{1}=" initial pressure= atmospheric pressure"=1.00\u00d710^5N\/M^{2}"
"P_{2}=" final pressure
"V_{1}=" Initial volume="120M^{3}"
"V_{2}=" final volume="25M^3"
"r=\\frac{Cv}{Cp}"
"r=" "\\frac{1.68kj\/kg^{-1}K^{-1}}{1.2kj\/kg^{-1}K^{-1}} =1.4"
Therefore:
"P_{2}=(1\u00d710^5N\/M^2)\u00d7(\\frac{120M^3}{25M^3})^{1.4}=8.99\u00d710^5N\/M^2"
From Ideal gas laws Final Temperature:
"T_{2}=(\\frac{P_{2}V_{2}}{P_{1}V_{1}})T_{1}"
Where:
"T_{1}= Room temperature=293K"
"T_{2}= (\\frac{8.99\u00d710^5N\/M^2\u00d725M^3}{1\u00d710^5N\/M^2\u00d7120M^3})\u00d7293K=548.76K"
Work done in Adiabatic process W:
"W=\\frac{1}{1-r}(P_{2} V_{2}-P_{1} V_{1})"
"W=\\frac{1}{1-1.4}(8.99\u00d710^5N\/M^2\u00d725M^3-1\u00d710^5N\/M^2\u00d7120M^3)= -261.875j"
Comments
Leave a comment