Gold has a face centered cubic unit cell and has the density 𝟏𝟗. 𝟑 𝒈 𝒄𝒎−𝟑. Calculate the
length along an edge. (𝐴𝑢 = 197 𝑔 𝑚𝑜𝑙−1)
FCC type gold contain atom
18×8+6×12=4\frac{1}{8}\times8+6\times\frac{1}{2}=481×8+6×21=4
Mass of unit cell of FCC type
4×1976.023×1023=1.30×10−214\times\frac{197}{6.023\times10^{23}}=1.30\times10^{-21}4×6.023×1023197=1.30×10−21 g
Density of gold =19.3g/cm3
Density=massofunitcellvolumeofunitcell\frac{mass of unit cell }{volume of unit cell}volumeofunitcellmassofunitcell
Volume of unit cell =massofunitcelldensityofgold\frac{mass of unit cell }{density of gold}densityofgoldmassofunitcell
V=a3=6.73×10−23cm3V=a^3=6.73\times10^{-23}cm^3V=a3=6.73×10−23cm3
a=4.06×10−8cma=4.06\times10^{-8}cma=4.06×10−8cm
For FCC type unit cell
a=8ra=\sqrt{8}ra=8r
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments