Question #248492

John kicks the ball, and the ball does a projectile motion with an angle of 53o to horizontal with an initial velocity of 10 m/s. What is (a) its maximum height, (b) its maximum distance, and (c) its hangtime?


1
Expert's answer
2021-10-10T15:59:38-0400

If we analyze the system we have the following diagram, where the initial velocities are V0x=V0cos(θ)V_{0x}=V_0\cos(\theta) and V0y=V0sin(θ)V_{0y}=V_0\sin(\theta):



We also have the range of the trip or maximum horizontal displacement R and the maximum vertical displacement or H (both expressed in meters).


At half of the trip, velocity for the y-axis is zero:Vy=Voygt=0    t=V0sinθgThe time of the whole trip will be twice the amountthat it takes to reach H or Vy=0:ttravel=2t=2V0sinθgR=V0xttravel=2V02sinθcosθgR=V02gsin2θOn the other hand, the maximum height will be found when we substitute t on the equation for H:H=Voyt12gt2=t(Voy12gt)H=(V0sinθg)(V0sinθg2(V0sinθg))H=V022gsin2θ\text {At half of the trip, velocity for the y-axis is zero:} \\V_y=V_{oy}-gt=0 \implies t= \cfrac{V_0 \sin\theta}{g} \\ \text{The time of the whole trip will be twice the amount} \\ \text{that it takes to reach H or V}_y=0: \\ t_{travel}= 2t=\cfrac{2V_0 \sin\theta}{g} \\ R=V_{0x}\cdot t_{travel}=\cfrac{2V^2_0 \sin\theta\cos\theta}{g} \\ \therefore R=\cfrac{V^2_0}{g} \sin {2\theta} \\ \text{On the other hand, the maximum height will be found} \\ \text{ when we substitute t on the equation for H:} \\ H=V_{oy}\cdot t-\frac{1}{2}gt^2= t(V_{oy}-\frac{1}{2}gt) \\ H= \bigg(\cfrac{V_0 \sin\theta}{g}\bigg) \bigg(V_0\sin {\theta}-\cfrac{g}{2} \bigg(\cfrac{V_0 \sin{\theta}}{g}\bigg) \bigg) \\ \therefore H=\cfrac{V^2_0}{2g} \sin^2 \theta


Now we proceed to substitute the initial velocity of the projectile V0=10msV_0=10\frac{m}{s}, the angle θ=53°\theta=53°, and g = 9.80 m/s2 to find the requested data:


(a)H=(V0sinθ)22g=((10ms)sin(53°))22(9.80ms2)=3.2542m (b)R=V02gsin2θ=(10ms)29.80ms2sin(106°)=9.8088m (c)ttravel=2V0sinθg=2(10ms)sin(53°)9.80ms2=1.6299s\\ (a)\,H=\cfrac{(V_0\sin \theta)^2}{2g} =\cfrac{((10\frac{m}{s})\sin {(53°)})^2}{2(9.80\frac{m}{s^2})} =3.2542\,m \\ \text{ } \\ (b)\,R=\cfrac{V^2_0}{g} \sin {2\theta}=\cfrac{(10\frac{m}{s})^2}{9.80\frac{m}{s^2}} \sin {(106°)}=9.8088\,m \\ \text{ } \\ (c)\,t_{travel} =\cfrac{2V_0 \sin\theta}{g}=\cfrac{2(10\frac{m}{s}) \sin{(53°)}}{9.80\frac{m}{s^2}}=1.6299\,s


Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS