(a) Find the magnitude of the gravitational force (in N) between a planet with mass 8.25 ✕ 1024 kg and its moon, with mass 2.30 ✕ 1022 kg, if the average distance between their centers is 2.30 ✕ 108 m.
__N
(b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.)
__ m/s2
(c)
What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.)
__ m/s2
(a)gravitational force
"F_g = G \\frac{m_pm_m}{r^2} = \\frac{6.67 \\times 10^{-11} \\times 8.25 \\times 10^{24} \\times 2.30 \\times 10^{22}}{(2.30 \\times10^8)^2} \\\\\n\n= 23.925 \\times 10^{19} \\;N"
(b)moon's acceleration (in m/s 2 ) toward the planet
"a_m = \\frac{F}{m_m} = G \\frac{m_p}{r^2} \\\\\n\n= \\frac{6.67 \\times 10^{-11} \\times (8.25 \\times 10^{24})}{(2.30 \\times 10^8)^2} \\\\\n\n= 10.40 \\times 10^{-3} \\;m\/s^2"
(с)planet's acceleration (in m/s 2 ) toward the moon
"a_p = \\frac{F}{m_p} = G\\frac{m_m}{r^2} \\\\\n\n= \\frac{6.67 \\times 10^{-11} \\times 2.30 \\times 10^{22}}{(2.30 \\times 10^8)^2} \\\\\n\n= 2.9 \\times 10^{-5} \\;m\/s^2"
Comments
Leave a comment