(a) Find the magnitude of the gravitational force (in N) between a planet with mass 8.25 ✕ 1024 kg and its moon, with mass 2.30 ✕ 1022 kg, if the average distance between their centers is 2.30 ✕ 108 m.
__N
(b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.)
__m/s2
(c) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.)
__ m/s2
(a)
Fg=Gmpmmr2=6.67×10−11×8.25×1024×2.30×1022(2.30×108)2=23.925×1019 NF_g = G \frac{m_pm_m}{r^2} = \frac{6.67 \times 10^{-11} \times 8.25 \times 10^{24} \times 2.30 \times 10^{22}}{(2.30 \times10^8)^2} \\ = 23.925 \times 10^{19} \;NFg=Gr2mpmm=(2.30×108)26.67×10−11×8.25×1024×2.30×1022=23.925×1019N
(b)
am=Fmm=Gmpr2=6.67×10−11×(8.25×1024)(2.30×108)2=10.40×10−3 m/s2a_m = \frac{F}{m_m} = G \frac{m_p}{r^2} \\ = \frac{6.67 \times 10^{-11} \times (8.25 \times 10^{24})}{(2.30 \times 10^8)^2} \\ = 10.40 \times 10^{-3} \;m/s^2am=mmF=Gr2mp=(2.30×108)26.67×10−11×(8.25×1024)=10.40×10−3m/s2
(с)
ap=Fmp=Gmmr2=6.67×10−11×2.30×1022(2.30×108)2=2.9×10−5 m/s2a_p = \frac{F}{m_p} = G\frac{m_m}{r^2} \\ = \frac{6.67 \times 10^{-11} \times 2.30 \times 10^{22}}{(2.30 \times 10^8)^2} \\ = 2.9 \times 10^{-5} \;m/s^2ap=mpF=Gr2mm=(2.30×108)26.67×10−11×2.30×1022=2.9×10−5m/s2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments