Question #245094

A spaceship's orbital maneuver requires a speed increase of 1.35  103 m/s. If its engine has an exhaust speed of 2.25  103 m/s, determine the required ratio Mi/Mf

 of its initial mass to its final mass. (The difference Mi − Mf

 equals the mass of the ejected fuel.)



____.



1
Expert's answer
2021-10-04T14:35:25-0400

According to Raw q conservation q momentum we have:

(M+Δm)V=M(v+Δv)+Δm(vve)mΔv=veΔmΔm=ΔMMΔv=veΔMvfvi=veln(MiMf)vfvive=ln(MiMf)1.35×1032.25×103=ln(MiMf)MiMf=e1.352.25=e0.6=1.822(M+Δm)V = M(v+Δv)+Δm(v-v_e) \\ mΔv=v_eΔm \\ Δm=-ΔM \\ MΔv =-v_eΔM \\ v_f-v_i =v_eln(\frac{M_i}{M_f}) \\ \frac{v_f-v_i}{v_e} = ln(\frac{M_i}{M_f}) \\ \frac{1.35 \times 10^3}{2.25 \times 10^3} = ln(\frac{M_i}{M_f}) \\ \frac{M_i}{M_f} = e^{\frac{1.35}{2.25}} = e^{0.6}=1.822


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS