Question #245089

Three ice skaters meet at the center of a rink and each stands at rest facing the center, within arm's reach of the other two. On a signal, each skater pushes himself away from the other two across the frictionless ice. After the push, skater A with mass mA = 70.0 kg

 moves in the negative y-direction at 2.00 m/s and skater B with mass mB = 85.0 kg

 moves in the negative x-direction at 3.50 m/s. Find the x- and y-components of the 75.0 kg skater C's velocity (in m/s) after the push.



vCx=__ m/s

vCy=___ m/s


1
Expert's answer
2021-10-03T13:24:44-0400

Three ice skaters meet at the center of a rink and we can consider that they are at rest before they start to move thus vskater Ai=vskater Bi=vskater Ci=0m/sv_{\text{skater A}_i} = v_{\text{skater B}_i} = v_{\text{skater C}_i} = 0\,m/s, in consequence pskater Ci=pskater Bi=pskater Ai=pi=0\vec{p}_{\text{skater C}_i}=\vec{p}_{\text{skater B}_i}=\vec{p}_{\text{skater A}_i}=\vec{p_{i}}=\vec{0} .


Since momentum is conserved, this means that pi=pf=pskater Af+pskater Bf+pskater Cf=0\vec{p_i}=\vec{p_f}=\vec{p}_{\text{skater A}_f}+\vec{p}_{\text{skater B}_f}+\vec{p}_{\text{skater C}_f}=\vec{0}. Now, we need to define the final conditions for the three skaters considering that A and B are moving along the negative y and x-axis, respectively:


vskater Af=[0ms,2ms];mA=70.0kgvskater Bf=[3.5ms,0ms];mB=85.0kgvskater Cf=[vcx,vcy];mC=75.0kg\vec{v}_{\text{skater A}_f} =[0\frac{m}s,-2\frac{m}s]; m_{\text{A}} =70.0\,kg \\ \vec{v}_{\text{skater B}_f} =[-3.5\frac{m}s,0\frac{m}s]; m_{\text{B}} =85.0\,kg \\ \vec{v}_{\text{skater C}_f} =[v_{c_x},v_{c_y}]; m_{\text{C}} =75.0\,kg


Considering this we substitute for pf=0\vec{p_f}= \vec{0} with the provided information when they started to move:


\\ m_{A}\vec{v}_{\text{skater A}_f} +m_{B}\vec{v}_{\text{skater B}_f} + m_{C}\vec{v}_{\text{skater C}_f} =\vec{0} \\ (70\,kg) [0\frac{m}s,-2\frac{m}s]+(85\,kg)[-3.5\frac{m}s,0\frac{m}s]+ (75\,kg)[v_{c_x},v_{c_y}] =\vec{0} \\ [0,-140](\frac{kgm}s)+[-297.5,0](\frac{kgm}s)+ (75\,kg)[v_{c_x},v_{c_y}] =\vec{0}


Following we can find [vcx,vcy][v_{c_x},v_{c_y}] as


[v_{c_x},v_{c_y}]= -\frac{(\frac{kgm}s)}{(75\,kg)}( [0,-140]+[-297.5,0]) \\ [v_{c_x},v_{c_y}]= -\frac{1}{(75)} [-297.5,-140](\frac{m}s) \\ [v_{c_x},v_{c_y}]= [+\frac{119}{30},+\frac{28}{15}](\frac{m}s)\approxeq[+3.966,+1.866](\frac{m}s)



In conclusion, vCx= 3.966 m/s and vCy= 1.866 m/s. The skater C traves through the xy quadrant at vC= 4.384 m/s.



Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS