Question #245083

A soccer player takes a corner kick, lofting a stationary ball 30.0° above the horizon at 23.0 m/s. If the soccer ball has a mass of 0.425 kg and the player's foot is in contact with it for 3.90  10−2 s, find the x- and y-components of the soccer ball's change in momentum and the magnitude of the average force exerted by the player's foot on the ball.



(a)the x- and y-components of the soccer ball's change in momentum (in kg · m/s)

Δpx= ___kg · m/s

Δpy= ___kg · m/s


(b) the magnitude of the average force exerted by the player's foot on the ball (in N)

 __N


1
Expert's answer
2021-10-01T12:21:33-0400

(a)the x- and y-components of the soccer ball's change in momentum (in kg · m/s)




The initial velocity of the ball will be V1 = 0 m/s because it is at rest. Then, to find the final velocity for each component we use the trigonometric relations:


v1=v1,y=v1,x=0m/sv2=23.0m/sv2,x=v2cosθv2,x=(23.0m/s)cos(30°)=19.9m/sv2,y=v2sinθv2,x=(23.0m/s)sin(30°)=11.5m/sv_1=v_{1,y}=v_{1,x}=0\,m/s \\ v_2=23.0\, m/s \\ v_{2,x}=v_2 \cos{\theta} \\ v_{2,x}=(23.0\, m/s)\cos{(30°)}=19.9\, m/s \\ v_{2,y}=v_2 \sin{\theta} \\ v_{2,x}=(23.0\, m/s)\sin{(30°)}=11.5\, m/s


Then we can calculate the change of momentum for the x-axis:


Δpx=m(v2,xv1,x)Δpx=(0.425kg)(19.90)m/sΔpx=8.4575kgm/s\Delta p_{x}=m(v_{2,x}-v_{1,x}) \\ \Delta p_{x}=(0.425\,kg)(19.9-0)\, m/s \\ \Delta p_{x}=8.4575 \,{kg}\cdot {m/s}


Following for the y-axis we find:


Δpy=m(v2,yv1,y)Δpy=(0.425kg)(11.50)m/sΔpy=4.8875kgm/s\Delta p_{y}=m(v_{2,y}-v_{1,y}) \\ \Delta p_{y}=(0.425\,kg)(11.5-0)\, m/s \\ \Delta p_{y}=4.8875 \,{kg}\cdot {m/s}


In conclusion, we have Δpx= 8.4575 kg · m/s and Δpy= 4.8875 kg · m/s.


(b) Then, for the second part the magnitude of the average force exerted by the player's foot on the ball (in N) is found with the impulse-force relation:


J=FΔt=p2p1FΔt=m(v2v1)    F=m(v2v1)Δt\vec{J}=\sum{\vec{F}}\cdot \Delta t=\vec{p_2}-\vec{p_1} \\ \sum{\vec{F}}\cdot \Delta t=m(\vec{v_2}-\vec{v_1}) \\ \implies \sum{{\vec{\mid F \mid}}}=\cfrac{m(\vec{\mid v_2 }-\vec{v_1\mid})}{\Delta t}


We use the definitions for v1 and v2 to find the vector that describes the change in velocity and then we can find the magnitude of such change:


(v2,x,v2,y)(v1,x,v1,y)=(19.9,11.5)(0,0)m/s    (19.9,11.5)m/s=((19.9)2+(11.5))m/s23m/sF=(0.425kg)(23m/s)3.90×102s    F=250.6N\mid({v_{2,x}},{v_{2,y}}) - ({v_{1,x}},{v_{1,y}}) \mid= \mid(19.9,11.5) -(0,0)\mid\,m/s \\ \implies \mid(19.9,11.5)\mid\,m/s=(\sqrt{(19.9)^2+(11.5)})\, m/s \approxeq 23\,m/s \\ \sum{{\vec{\mid F \mid}}}=\cfrac{(0.425\,kg)(23\,m/s)}{3.90\times 10^{-2}s} \\ \implies \sum{{\vec{\mid F \mid}}}=250.6\,N


In conclusion, the average force exerted by the player's foot is 250.6 N.



Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS