Question #244319
Heat is transferred to 6 kg of air which is initially at 100 kPa and B
0C until its temperature reaches 600
K and pressure reaches at 150 kPa. Determine the change in internal energy, the change in enthalpy,
the heat supplied and the work done in the following processes:
1. Constant Volume Process followed by Constant PressureProcess
2. Constant Pressure process followed by Constant VolumeProcess
Assume that air is an ideal gas. R=8.314 KJ/Kmol K, Cp=20.785 KJ/Kmol K and Cv =20.785
KJ/Kmol KMolecular weight of air =29. B = 42
1
Expert's answer
2021-09-30T10:20:35-0400



1. Constant Volume Process followed by Constant Pressure Process: At first, we have:

n=6kg0.029kg/mol=206.897molofair T1=42°C=315KV1=nRT1P1V1=(206.897mol)(8.314kPaLmolK)(315K)100kPaV1=5418.446Ln=\frac{6\,kg}{0.029\,kg/mol}=206.897\,mol\,of\,air \\ \text{ } \\ T_1=42\,°C=315\,K \\ V_1=\frac{nRT_1}{P_1} \\ V_1=\cfrac{(206.897\,mol)(8.314\frac{kPaL}{mol\,K})(315\,K)}{100\,kPa} \\ V_1=5418.446\,L


First, since V1=V2 (for the constant volume process):


T2=T1P2P1=(315K)(150kPa100kPa)=472.5KT_2=T_1\frac{P_2}{P_1}=(315\,K)(\frac{150\,kPa}{100\,kPa})=472.5\,K


Then, we know that for an isochoric process W=pdV=0W=\intop pdV=0, this implies that the first law of thermodynamics is now ΔU=QW=Q=nCv(T2T1)\Delta U = Q-W=Q=nC_v(T_2-T_1) and for the enthalpy change ΔH=nCp(T2T1)\Delta H = nC_p(T_2-T_1).


W=0JΔU=Q=(206.897mol)(20.785JmolK)(472.5315)KΔU=Q=677305.778JΔH=(206.897mol)(20.785JmolK)(472.5315)KΔH=677305.778JW=0\,J \\ \Delta U =Q=(206.897\,mol)(20.785\frac{J}{mol\,K})(472.5-315)K \\ \Delta U =Q= 677305.778\,J \\ \Delta H=(206.897\,mol)(20.785\frac{J}{mol\,K})(472.5-315)K \\ \Delta H= 677305.778\,J


The second part is an isobaric process, where


P2=P3=150kPaT2=472.5K;T3=600KV2=5418.446LV3=V2T3T2=(5418.446L)(600K472.5K)V3=6880.566LP_2=P_3=150\,kPa \\ T_2=472.5\,K; T_3=600\,K \\ V_2=5418.446\,L \\ V_3=V_2\frac{T_3}{T_2}=(5418.446\,L)(\frac{600\,K}{472.5\,K}) \\ V_3=6880.566\,L


Now we can find the rest of the terms knowing the same equations as before for ΔU\Delta U and ΔH\Delta H:


W=P2(V3V2)W=(150kPa)(6880.5665418.446)L=219318JΔU=(206.897mol)(20.785JmolK)(600472.5)KΔU=548295.153JQ=ΔU+W=767613.153JΔH=(206.897mol)(20.785JmolK)(600472.5)KΔH=548295.153JW=P_2(V_3-V_2) \\ W=(150\,kPa)(6880.566-5418.446)L=219318\,J \\ \Delta U =(206.897\,mol)(20.785\frac{J}{mol\,K})(600-472.5)K \\ \Delta U =548295.153\,J \\ Q=\Delta U + W = 767613.153\,J \\ \Delta H=(206.897\,mol)(20.785\frac{J}{mol\,K})(600-472.5)K \\ \Delta H= 548295.153\,J


The conclusion for the first part is


W=(0+219318)J=219318J=219.318kJQ=(677305.778+767613.153)J=1444918.931J=1444.918kJΔU=(677305.778+548295.153)J=1225600.931J=1225.601kJΔH=(677305.778+548295.153)J=1225600.931J=1225.601kJW=(0+219318)\,J=219318\,J=219.318\,kJ \\ Q=(677305.778+767613.153)\,J=1444918.931\,J=1444.918\,kJ \\ \Delta U=(677305.778+548295.153)\,J=1225600.931 \,J=1225.601\,kJ \\ \Delta H=(677305.778+548295.153)\,J=1225600.931 \,J=1225.601\,kJ


2. Constant Pressure process followed by Constant Volume Process


First, we know that


n=6kg0.029kg/mol=206.897molofair T1=42°C=315KV1=nRT1P1V1=(206.897mol)(8.314kPaLmolK)(315K)100kPaV1=5418.446Ln=\frac{6\,kg}{0.029\,kg/mol}=206.897\,mol\,of\,air \\ \text{ } \\ T_1=42\,°C=315\,K \\ V_1=\frac{nRT_1}{P_1} \\ V_1=\cfrac{(206.897\,mol)(8.314\frac{kPaL}{mol\,K})(315\,K)}{100\,kPa} \\ V_1=5418.446\,L


First, since P1=P2 (for the constant pressure process):


V2=V1T2T1=(5418.446L)(600K315K)=10320.849LV_2=V_1\frac{T_2}{T_1}=(5418.446\,L)(\frac{600\,K}{315\,K})=10320.849\,L


Now, we know that for this process we can calculate the following:


W=P1(V2V1)=(100kPa)(10320.8495418.446)L=490240.3JΔU=(206.897mol)(20.785JmolK)(600315)KΔU=1225600.931JQ=ΔU+W=1775841.231JΔH=(206.897mol)(20.785JmolK)(600315)KΔH=1225600.931JW=P_1(V_2-V_1)=(100\,kPa)(10320.849-5418.446)L=490240.3\,J \\ \Delta U =(206.897\,mol)(20.785\frac{J}{mol\,K})(600-315)K \\ \Delta U =1225600.931\,J \\ Q=\Delta U + W = 1775841.231\,J \\ \Delta H=(206.897\,mol)(20.785\frac{J}{mol\,K})(600-315)K \\ \Delta H= 1225600.931\,J

Now, the second part of this other process involves a process at constant volume, where


V2=V3=10320.849LT2=T1P2P1=(600K)(150kPa100kPa)=900KV_2=V_3=10320.849\,L \\ T_2=T_1\frac{P_2}{P_1}=(600\,K)(\frac{150\,kPa}{100\,kPa})=900\,K


Then, since the volume is constant no work is done thus


W=0JΔU=Q=(206.897mol)(20.785JmolK)(900600)KΔU=Q=1290106.244JΔH=(206.897mol)(20.785JmolK)(900600)KΔH=1290106.244JW=0\,J \\ \Delta U =Q=(206.897\,mol)(20.785\frac{J}{mol\,K})(900-600)K \\ \Delta U =Q= 1290106.244\,J \\ \Delta H=(206.897\,mol)(20.785\frac{J}{mol\,K})(900-600)K \\ \Delta H= 1290106.244\,J


For the second part, we have the following


W=(490240.3+0)J=490240.3J=490.240kJQ=(1775841.231+1290106.244)J=3065947.475J=3065.947kJΔU=(1225600.931+1290106.244)J=2515707.175J=2515.707kJΔH=(1225600.931+1290106.244)J=2515707.175J=2515.707kJW=(490240.3+0)\,J=490240.3\,J=490.240\,kJ \\ Q=(1775841.231+1290106.244)\,J=3065947.475\,J=3065.947\,kJ \\ \Delta U=(1225600.931+1290106.244)\,J=2515707.175\,J=2515.707\,kJ \\ \Delta H=(1225600.931+1290106.244)\,J=2515707.175\,J=2515.707\,kJ



Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS