n=0.029kg/mol6kg=206.897molofair T1=42°C=315KV1=P1nRT1V1=100kPa(206.897mol)(8.314molKkPaL)(315K)V1=5418.446L
First, since V1=V2 (for the constant volume process):
T2=T1P1P2=(315K)(100kPa150kPa)=472.5K
Then, we know that for an isochoric process W=∫pdV=0, this implies that the first law of thermodynamics is now ΔU=Q−W=Q=nCv(T2−T1) and for the enthalpy change ΔH=nCp(T2−T1).
W=0JΔU=Q=(206.897mol)(20.785molKJ)(472.5−315)KΔU=Q=677305.778JΔH=(206.897mol)(20.785molKJ)(472.5−315)KΔH=677305.778J
The second part is an isobaric process, where
P2=P3=150kPaT2=472.5K;T3=600KV2=5418.446LV3=V2T2T3=(5418.446L)(472.5K600K)V3=6880.566L
Now we can find the rest of the terms knowing the same equations as before for ΔU and ΔH:
W=P2(V3−V2)W=(150kPa)(6880.566−5418.446)L=219318JΔU=(206.897mol)(20.785molKJ)(600−472.5)KΔU=548295.153JQ=ΔU+W=767613.153JΔH=(206.897mol)(20.785molKJ)(600−472.5)KΔH=548295.153J
First, we know that
n=0.029kg/mol6kg=206.897molofair T1=42°C=315KV1=P1nRT1V1=100kPa(206.897mol)(8.314molKkPaL)(315K)V1=5418.446L
First, since P1=P2 (for the constant pressure process):
V2=V1T1T2=(5418.446L)(315K600K)=10320.849L
Now, we know that for this process we can calculate the following:
W=P1(V2−V1)=(100kPa)(10320.849−5418.446)L=490240.3JΔU=(206.897mol)(20.785molKJ)(600−315)KΔU=1225600.931JQ=ΔU+W=1775841.231JΔH=(206.897mol)(20.785molKJ)(600−315)KΔH=1225600.931J
Now, the second part of this other process involves a process at constant volume, where
V2=V3=10320.849LT2=T1P1P2=(600K)(100kPa150kPa)=900K
Then, since the volume is constant no work is done thus
W=0JΔU=Q=(206.897mol)(20.785molKJ)(900−600)KΔU=Q=1290106.244JΔH=(206.897mol)(20.785molKJ)(900−600)KΔH=1290106.244J
- Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments