Question #235642

10 kg of fluid per minute goes through a reversible steady flow process. The

properties of fluid at the inlet are : p1 = 1.5 bar, ρ1 = 26 kg/m3, C1 = 110 m/s and u1 = 910 kJ/kg and

at the exit are p2 = 5.5 bar, ρ2 = 5.5 kg/m3, C2 = 190 m/s and u2 = 710 kJ/kg. During the passage,

the fluid rejects 55 kJ/s and rises through 55 metres. Determine :

(i) The change in enthalpy (∆ h) ;

(ii) Work done during the process (W).


1
Expert's answer
2021-09-12T18:59:05-0400

Flow of fluid = 10 kg/min

Properties of fluid at the inlet :

Pressure p1=1.5  bar=1.5×105  N/m2p_1= 1.5 \;bar = 1.5 \times 10^5 \;N/m^2

Density ρ1=26  kg/m3ρ_1 = 26 \;kg/m^3

Velosity C1=110  m/sC_1= 110 \;m/s

Internal energy u1=910  kJ/kgu_1=910 \;kJ/kg

Properties of the fluid at the exit :

Pressure p2=5.5  bar=5.5×105  N/m2p_2= 5.5 \;bar = 5.5 \times 10^5 \;N/m^2

Density ρ2=5.5  kg/m3ρ_2 = 5.5 \;kg/m^3

Velocity C2=190  m/sC_2= 190 \;m/s

Internal energy u2=710  kJ/kgu_2=710 \;kJ/kg

Heat rejected by the fluid, Q=55  kJ/sQ= 55 \;kJ/s

Rise is elevation of fluid = 55 m

(i) The change in enthalpy,

Δh=Δu+Δ(pv)        (i)Δ(pv)=p2v2p1v11=p2ρ2p1ρ1=1×1050.0577×105=105×0.9423  Nm=94.23  kJΔu=u2u1=710910=200  kJ/kgΔh=Δu +Δ(pv) \;\;\;\;(i)\\ Δ(pv) = \frac{p_2v_2 -p_1v_1}{1} \\ = \frac{p_2}{ρ_2} -\frac{p_1}{ρ_1} \\ = 1 \times 10^5 -0.0577 \times 10^5 \\ = 10^5 \times 0.9423 \;Nm \\ = 94.23 \;kJ \\ Δu =u_2 -u_1 = 710 -910 = -200 \;kJ/kg

Substituting the value in eqn. (i), we get

Δh=200+94.23=105.77  kJ/kgΔh = -200 + 94.23 = -105.77 \;kJ/kg

(ii) The steady flow equation for unit mass flow can be written as

Q=ΔKE+ΔPE+Δh+WQ=ΔKE + ΔPE +Δh +W

where Q is the heat transfer per kg of fluid

Q=55  kJ/s=55  kJ/s1060  kg/s=55×6=330  kJ/kgΔKE=C22C122=190211022  Nm=12000  J=12  kJΔPE=(Z2Z1)  g=(550)×9.81  Nm=539.5  J=0.54  kJQ= 55 \;kJ/s = \frac{55 \;kJ/s}{\frac{10}{60} \;kg/s} = 55 \times 6 = 330 \;kJ/kg \\ ΔKE = \frac{C^2_2 -C^2_1}{2}= \frac{190^2 -110^2}{2} \;Nm = 12000 \;J = 12 \;kJ \\ ΔPE=(Z_2 -Z_1) \;g = (55- 0) \times 9.81 \;Nm = 539.5 \;J = 0.54 \;kJ

Substituting the value in steady flow equation,

330=12+0.54105.77+WW=236.77  kJ/kg-330 = 12 +0.54 -105.77 +W \\ W= -236.77 \;kJ/kg

Work done per second =236.77×1060=39.46  kJ/s=39.46  kW= -236.77 \times \frac{10}{60} = -39.46 \;kJ/s = -39.46 \;kW


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS