Given :
V1=0.15m3p1=15barT1=T2=550KV1V2=4T3=290K
Considering the isothermal process 1–2, we have
p1V1=p2V2p2=V2p1V1p2=4×0.1515×0.15=3.75bar
Work done,
W1−2=p1V1loge(V1V2)=(15×105)×0.15×loge(4)=311916J=311.9kJ
Considering constant volume process 2-3, we get
V2=V3=V4×0.15=0.6m3T2p2=T3p3p3=p2×T2T3=3.75×550290=1.98barW2−3=0
...since volume remains constant
Consider polytropic process 3–1 :
p3V3n=p1V1np3p1=(V1V3)n
Taking log on both sides, we get
loge(p3p1)=nloge(V1V3)n=loge(V1V3)loge(p3p1)=loge(4)loge(1.9815)=1.46W3−1=n−1p3V3−p1V1=1.46−11.98×105×0.6–15×105×0.15=−230869J=−230.87kJ
Net work done =W1–2+W2–3+W3–1
=311.9+0+(−230.87)=81.03kJ
For a cuclic process,
∮δQ=∮δW
Heat transferred during the cycle = 81.03 kJ
Comments