"p=a+bV \\\\\n\np_1 =190 \\;kPa \\\\\n\nV_1= 0.035 \\;m^3 \\\\\n\np_2= 420 \\;kPa \\\\\n\nV_2=0.07 \\;m^3 \\\\\n\np_1= a+bV_1 \\\\\n\np_2= a+bV_2 \\\\\n\np_2-p_1=b(V_2-V_1) \\\\\n\nb = \\frac{p_2-p_1}{V_2-V_1} \\\\\n\np_1= a+bV_1 \\\\\n\np_1 = a+ (\\frac{p_2-p_1}{V_2-V_1})V_1 \\\\\n\na= p_1 -(\\frac{p_2-p_1}{V_2-V_1})V_1 \\\\\n\n= \\frac{p_1V_2 -p_1V_1 -p_2V_1+p_1V_1}{V_2-V_1} \\\\\n\n= \\frac{p_1V_2-p_2V_1}{V_2-V_1} \\\\\n\nb = \\frac{420-190}{0.07-0.035} = 6571.43 \\;kPa\/m^3 \\\\\n\na=\\frac{190 \\times 0.07 + 420 \\times 0.035}{0.07-0.035} = -40 \\;kPa \\\\\n\np= a+bV \\\\\n\np= -40+6571.43V"
Work transfer (W) "= \\int^{V_2}_{V_1}pdV"
"= \\int^{0.07}_{0.035} (-40 +6571.43V)dV \\\\\n\n= (-40V + \\frac{6571.43}{2}V^2)^{0.07}_{0.035} \\\\\n\n= -40(0.07 -0.035) + \\frac{6571.43}{2}(0.07^2 -0.035^2) \\\\\n\n= -1.4 + 12.075 \\\\\n\n= 10.675 \\;kJ"
Since work is positive, work is done by the fluid.
"U = 42 + 3.6 pV \\\\\n\nU_1=42+3.6p_1V_1 \\\\\n\nU_2=42+3.6p_2V_2 \\\\\n\n\u0394U=U_2-U_1 \\\\\n\n= 3.6(p_2V_2- p_1V_1) \\\\\n\n= 3.6(420 \\times 0.07 -190 \\times 0.035) \\\\\n\n= 81.9 \\;kJ"
Heat transfer Q = ΔU+W
"= 81.9+10.675 \\\\\n\n= 92.575 \\;kJ"
Since heat transfer is positive, heat is transferred to the system.
Comments
Leave a comment